Suppr超能文献

使用zeta吸附等温线测定纳米多孔材料的表面性质和吸附状态。

Determination of the surface properties and adsorption states of nanoporous materials using the zeta adsorption isotherm.

作者信息

Zhang Wei, Wu Chun-Mei, Li You-Rong

机构信息

Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.

出版信息

Phys Chem Chem Phys. 2023 Aug 30;25(34):22669-22678. doi: 10.1039/d3cp02387g.

Abstract

The adsorption process of porous materials has always been a popular field of research in interfacial physics, and the surface physical parameters of materials can be obtained from their adsorption characteristics, which has a great influence on the performance of materials. Based on the zeta adsorption isotherm, we propose a method based on the zeta adsorption isotherm to predict the entire adsorption process of porous materials and determine material surface properties from the measured isotherm data in the heterogeneity-free range. We applied the zeta constants of the silica adsorption system to the corresponding adsorption isotherm of the porous material. The results showed that the predicted adsorption isotherms are in good agreement with the experimental measurements before pore filling and can effectively identify the pressure ratios at the beginning and end of pore filling. In the region of high-pressure ratios, the Kelvin equation was utilized to calculate the pressure ratio at a contact angle of 0°. The surface parameters of the materials were determined by geometrically calculating the variation of the adsorption amount and the desorption isotherms in the high-pressure ratio range were calculated from these surface parameters. The predicted desorption isotherms can well reflect the adsorption process of silica porous materials in the region of a high-pressure ratio. In addition, for the surface parameters of the materials, the specific surface area calculated from the adsorption and desorption isotherms, respectively, differed by less than 7.9%, and the reliability of the method was verified by comparing the results with those of the argon adsorption systems.

摘要

多孔材料的吸附过程一直是界面物理学中一个热门的研究领域,材料的表面物理参数可从其吸附特性中获取,这对材料性能有很大影响。基于zeta吸附等温线,我们提出了一种基于zeta吸附等温线的方法来预测多孔材料的整个吸附过程,并在无不均匀性范围内根据测量的等温线数据确定材料表面性质。我们将二氧化硅吸附系统的zeta常数应用于多孔材料的相应吸附等温线。结果表明,预测的吸附等温线在孔隙填充前与实验测量结果吻合良好,并且可以有效地识别孔隙填充开始和结束时的压力比。在高压比区域,利用开尔文方程计算接触角为0°时的压力比。通过几何计算吸附量的变化来确定材料的表面参数,并根据这些表面参数计算高压比范围内的解吸等温线。预测的解吸等温线能够很好地反映二氧化硅多孔材料在高压比区域的吸附过程。此外,对于材料的表面参数,分别从吸附和解吸等温线计算得到的比表面积相差不到7.9%,通过与氩吸附系统的结果进行比较验证了该方法的可靠性。

相似文献

2
Molecular insight into the formation of adsorption clusters based on the zeta isotherm.
Phys Chem Chem Phys. 2020 May 14;22(18):10123-10131. doi: 10.1039/c9cp07029j. Epub 2020 Apr 29.
3
Adsorption of n-pentane on mesoporous silica and adsorbent deformation.
Langmuir. 2013 Jul 9;29(27):8601-8. doi: 10.1021/la401513n. Epub 2013 Jun 26.
5
Study of hexane adsorption in nanoporous MCM-41 silica.
Langmuir. 2004 Jan 20;20(2):389-95. doi: 10.1021/la0353430.
6
Contact angles and surface properties of nanoporous materials.
J Colloid Interface Sci. 2013 Oct 1;407:255-64. doi: 10.1016/j.jcis.2013.06.062. Epub 2013 Jul 10.
7
Aspects of Gas Storage: Confined Geometry Effects on the High-Pressure Adsorption Behavior of Supercritical Fluids.
Langmuir. 2024 Jan 30;40(4):2079-2090. doi: 10.1021/acs.langmuir.3c02841. Epub 2024 Jan 16.
8
Clusters in the adsorbates of vapours and gases: zeta isotherm approach.
Phys Chem Chem Phys. 2014 Jun 14;16(22):10979-89. doi: 10.1039/c4cp00843j.
9
Adsorption-desorption isotherm hysteresis of phenol on a C18-bonded surface.
J Chromatogr A. 2003 Aug 29;1010(2):153-76. doi: 10.1016/s0021-9673(03)01071-9.
10
Evaluation of pore size distribution in boundary region of micropore and mesopore using gas adsorption method.
J Colloid Interface Sci. 2003 Jun 1;262(1):116-25. doi: 10.1016/S0021-9797(02)00254-0.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验