Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain.
Methods Mol Biol. 2023;2700:3-38. doi: 10.1007/978-1-0716-3366-3_1.
Toll-like receptors (TLRs), classified as pattern recognition receptors, have a primordial role in the activation of the innate immunity. In particular, TLR4 binds to lipopolysaccharides (LPS), a membrane constituent of Gram-negative bacteria, and, together with Myeloid Differentiation factor 2 (MD-2) protein, forms a heterodimeric complex which leads to the activation of the innate immune system response. Identification of TLRs has sparked great interest in the therapeutic manipulation of the innate immune system. In particular, TLR4 antagonists may be useful for the treatment of septic shock, certain autoimmune diseases, noninfectious inflammatory disorders, and neuropathic pain, and TLR4 agonists are under development as vaccine adjuvants in antitumoral treatments. Therefore, TLR4 has risen as a promising therapeutic target, and its modulation constitutes a highly relevant and active research area. Deep structural understanding of TLR4 signaling may help in the design and discovery of TLR4-modulating molecules with desirable therapeutic properties.Computational studies of the different independent domains composing the TLR4 were undertaken, to understand the differential domain organization of TLR4 in aqueous and membrane environments, including Liquid-disordered (Ld) and Liquid-ordered (Lo) membrane models, to account for the TLR4 recruitment in lipid rafts over activation. We modeled, by means of all-atom Molecular Dynamics (MD) simulations, the structural assembly of plausible full-length TLR4 models embedded into a realistic plasma membrane, accounting for the active (agonist) state of the TLR4, thus providing an analysis at both atomic/molecular and thermodynamic levels of the TLR4 assembly and biological activity. Our results unveil relevant molecular aspects involved in the mechanism of receptor activation, and adaptor recruitment in the innate immune pathways, and will promote the discovery of new TLR4 modulators and probes.
Toll 样受体(TLRs)作为模式识别受体,在先天免疫的激活中起着原始作用。特别是,TLR4 结合脂多糖(LPS),革兰氏阴性菌的膜成分,与髓样分化因子 2(MD-2)蛋白一起形成异二聚体复合物,导致先天免疫系统反应的激活。TLRs 的鉴定激发了对先天免疫系统治疗干预的极大兴趣。特别是,TLR4 拮抗剂可能对脓毒性休克、某些自身免疫性疾病、非传染性炎症性疾病和神经病理性疼痛的治疗有用,而 TLR4 激动剂正在作为抗肿瘤治疗中的疫苗佐剂进行开发。因此,TLR4 已成为一个有前途的治疗靶点,其调节构成了一个高度相关和活跃的研究领域。对 TLR4 信号转导的深入结构理解可能有助于设计和发现具有理想治疗特性的 TLR4 调节分子。对组成 TLR4 的不同独立结构域进行了计算研究,以了解 TLR4 在水相和膜环境中的不同结构域组织,包括无序液体(Ld)和有序液体(Lo)膜模型,以解释 TLR4 在激活时在脂筏中的募集。我们通过全原子分子动力学(MD)模拟,对合理的全长 TLR4 模型进行了结构组装,嵌入到真实的质膜中,考虑到 TLR4 的活性(激动剂)状态,从而在原子/分子和热力学水平上对 TLR4 组装和生物活性进行了分析。我们的结果揭示了参与受体激活机制和先天免疫途径衔接蛋白募集的相关分子方面,并将促进新的 TLR4 调节剂和探针的发现。