Sasaki Takehiro, Collins Scott L, Rudgers Jennifer A, Batdelger Gantsetseg, Baasandai Erdenetsetseg, Kinugasa Toshihiko
Graduate School of Environment and Information Sciences, Yokohama National University, Hodogaya, Yokohama 240-8501, Japan.
Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM 87131.
Proc Natl Acad Sci U S A. 2023 Aug 29;120(35):e2305050120. doi: 10.1073/pnas.2305050120. Epub 2023 Aug 21.
Primary productivity response to climatic drivers varies temporally, indicating state-dependent interactions between climate and productivity. Previous studies primarily employed equation-based approaches to clarify this relationship, ignoring the state-dependent nature of ecological dynamics. Here, using 40 y of climate and productivity data from 48 grassland sites across Mongolia, we applied an equation-free, nonlinear time-series analysis to reveal sensitivity patterns of productivity to climate change and variability and clarify underlying mechanisms. We showed that productivity responded positively to annual precipitation in mesic regions but negatively in arid regions, with the opposite pattern observed for annual mean temperature. Furthermore, productivity responded negatively to decreasing annual aridity that integrated precipitation and temperature across Mongolia. Productivity responded negatively to interannual variability in precipitation and aridity in mesic regions but positively in arid regions. Overall, interannual temperature variability enhanced productivity. These response patterns are largely unrecognized; however, two mechanisms are inferable. First, time-delayed climate effects modify annual productivity responses to annual climate conditions. Notably, our results suggest that the sensitivity of annual productivity to increasing annual precipitation and decreasing annual aridity can even be negative when the negative time-delayed effects of annual precipitation and aridity on productivity prevail across time. Second, the proportion of plant species resistant to water and temperature stresses at a site determines the sensitivity of productivity to climate variability. Thus, we highlight the importance of nonlinear, state-dependent sensitivity of productivity to climate change and variability, accurately forecasting potential biosphere feedback to the climate system.
初级生产力对气候驱动因素的响应随时间变化,这表明气候与生产力之间存在状态依赖的相互作用。以往的研究主要采用基于方程的方法来阐明这种关系,却忽略了生态动力学的状态依赖性质。在此,我们利用蒙古48个草原站点40年的气候和生产力数据,应用无方程的非线性时间序列分析,以揭示生产力对气候变化和变率的敏感性模式,并阐明其潜在机制。我们发现,生产力在中生地区对年降水量呈正响应,而在干旱地区呈负响应,对年平均温度的响应模式则相反。此外,生产力对蒙古地区综合降水量和温度的年干旱度下降呈负响应。生产力在中生地区对降水量和干旱度的年际变率呈负响应,而在干旱地区呈正响应。总体而言,年际温度变率提高了生产力。这些响应模式在很大程度上未被认识到;然而,可以推断出两种机制。首先,气候的时间延迟效应改变了年生产力对年气候条件的响应。值得注意的是,我们的结果表明,当年降水量和干旱度对生产力的负时间延迟效应在时间上占主导时,年生产力对年降水量增加和年干旱度下降的敏感性甚至可能为负。其次,一个站点耐水和耐温度胁迫的植物物种比例决定了生产力对气候变率的敏感性。因此,我们强调了生产力对气候变化和变率的非线性、状态依赖敏感性的重要性,这对于准确预测潜在的生物圈对气候系统的反馈至关重要。