文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

优化癫痫病理性高频振荡的检测和基于深度学习的分类。

Optimizing detection and deep learning-based classification of pathological high-frequency oscillations in epilepsy.

机构信息

Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.

Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, CA, USA.

出版信息

Clin Neurophysiol. 2023 Oct;154:129-140. doi: 10.1016/j.clinph.2023.07.012. Epub 2023 Aug 9.


DOI:10.1016/j.clinph.2023.07.012
PMID:37603979
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10861270/
Abstract

OBJECTIVE: This study aimed to explore sensitive detection methods for pathological high-frequency oscillations (HFOs) to improve seizure outcomes in epilepsy surgery. METHODS: We analyzed interictal HFOs (80-500 Hz) in 15 children with medication-resistant focal epilepsy who underwent chronic intracranial electroencephalogram via subdural grids. The HFOs were assessed using the short-term energy (STE) and Montreal Neurological Institute (MNI) detectors and examined for spike association and time-frequency plot characteristics. A deep learning (DL)-based classification was applied to purify pathological HFOs. Postoperative seizure outcomes were correlated with HFO-resection ratios to determine the optimal HFO detection method. RESULTS: The MNI detector identified a higher percentage of pathological HFOs than the STE detector, but some pathological HFOs were detected only by the STE detector. HFOs detected by both detectors had the highest spike association rate. The Union detector, which detects HFOs identified by either the MNI or STE detector, outperformed other detectors in predicting postoperative seizure outcomes using HFO-resection ratios before and after DL-based purification. CONCLUSIONS: HFOs detected by standard automated detectors displayed different signal and morphological characteristics. DL-based classification effectively purified pathological HFOs. SIGNIFICANCE: Enhancing the detection and classification methods of HFOs will improve their utility in predicting postoperative seizure outcomes.

摘要

目的:本研究旨在探索病理高频振荡(HFO)的敏感检测方法,以提高癫痫手术中的癫痫发作结局。

方法:我们分析了 15 名药物难治性局灶性癫痫儿童的发作间期 HFO(80-500 Hz),这些儿童通过硬膜下网格进行了慢性颅内脑电图检查。使用短期能量(STE)和蒙特利尔神经学研究所(MNI)探测器评估 HFO,并检查其与棘波的关联和时频图特征。应用基于深度学习(DL)的分类来纯化病理 HFO。将术后癫痫发作结果与 HFO 切除比率相关联,以确定最佳 HFO 检测方法。

结果:MNI 探测器比 STE 探测器识别出更高比例的病理 HFO,但有些病理 HFO 仅由 STE 探测器检测到。两种探测器检测到的 HFO 具有最高的棘波关联率。使用基于 DL 的分类进行纯化前后,联合探测器(检测由 MNI 或 STE 探测器识别的 HFO)在使用 HFO 切除比率预测术后癫痫发作结果方面优于其他探测器。

结论:标准自动探测器检测到的 HFO 显示出不同的信号和形态特征。基于 DL 的分类有效地纯化了病理 HFO。

意义:增强 HFO 的检测和分类方法将提高其预测术后癫痫发作结果的效用。

相似文献

[1]
Optimizing detection and deep learning-based classification of pathological high-frequency oscillations in epilepsy.

Clin Neurophysiol. 2023-10

[2]
Optimizing Detection and Deep Learning-based Classification of Pathological High-Frequency Oscillations in Epilepsy.

medRxiv. 2023-4-17

[3]
Characterizing physiological high-frequency oscillations using deep learning.

J Neural Eng. 2022-12-7

[4]
Flexible, high-resolution cortical arrays with large coverage capture microscale high-frequency oscillations in patients with epilepsy.

Epilepsia. 2023-7

[5]
Interictal high-frequency oscillations (HFOs) as predictors of high frequency and conventional seizure onset zones.

Epileptic Disord. 2015-12

[6]
Detection of pathological high-frequency oscillations in refractory epilepsy patients undergoing simultaneous stereo-electroencephalography and magnetoencephalography.

Seizure. 2023-4

[7]
Association between Removal of High-Frequency Oscillations and the Effect of Epilepsy Surgery: A Meta-Analysis.

J Neurol Surg A Cent Eur Neurosurg. 2024-5

[8]
Detection and localization of interictal ripples with magnetoencephalography in the presurgical evaluation of drug-resistant insular epilepsy.

Brain Res. 2018-11-5

[9]
Correcting for physiological ripples improves epileptic focus identification and outcome prediction.

Epilepsia. 2022-2

[10]
Resection of ictal high-frequency oscillations leads to favorable surgical outcome in pediatric epilepsy.

Epilepsia. 2012-8-20

引用本文的文献

[1]
Artificial intelligence in electroencephalography analysis for epilepsy diagnosis and management.

Front Neurol. 2025-8-18

[2]
Self-supervised data-driven approach defines pathological high-frequency oscillations in epilepsy.

Epilepsia. 2025-7-12

[3]
SEEG in 2025: progress and pending challenges in stereotaxy methods, biomarkers and radiofrequency thermocoagulation.

Curr Opin Neurol. 2025-4-1

[4]
Self-Supervised Data-Driven Approach Defines Pathological High-Frequency Oscillations in Human.

medRxiv. 2024-11-5

[5]
PyHFO: lightweight deep learning-powered end-to-end high-frequency oscillations analysis application.

J Neural Eng. 2024-5-28

[6]
Machine Learning and Artificial Intelligence Applications to Epilepsy: a Review for the Practicing Epileptologist.

Curr Neurol Neurosci Rep. 2023-12

本文引用的文献

[1]
Characterizing physiological high-frequency oscillations using deep learning.

J Neural Eng. 2022-12-7

[2]
Intraoperative electrocorticography using high-frequency oscillations or spikes to tailor epilepsy surgery in the Netherlands (the HFO trial): a randomised, single-blind, adaptive non-inferiority trial.

Lancet Neurol. 2022-11

[3]
Deep learning for epileptogenic zone delineation from the invasive EEG: challenges and lookouts.

Brain Commun. 2021-12-27

[4]
Refining epileptogenic high-frequency oscillations using deep learning: a reverse engineering approach.

Brain Commun. 2021-11-3

[5]
Interictal spikes with and without high-frequency oscillation have different single-neuron correlates.

Brain. 2021-11-29

[6]
Objective interictal electrophysiology biomarkers optimize prediction of epilepsy surgery outcome.

Brain Commun. 2021-3-14

[7]
Detection of high-frequency oscillations in electroencephalography: A scoping review and an adaptable open-source framework.

Seizure. 2021-1

[8]
Amplitude of high frequency oscillations as a biomarker of the seizure onset zone.

Clin Neurophysiol. 2020-11

[9]
Trends in the use of automated algorithms for the detection of high-frequency oscillations associated with human epilepsy.

Epilepsia. 2020-8

[10]
Quantitative analysis of intracranial electrocorticography signals using the concept of statistical parametric mapping.

Sci Rep. 2019-11-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索