Suppr超能文献

精神分裂症谱系障碍患者在个性化内在网络拓扑结构后观察到的稳健的分层全脑连接异常模式。

Robust hierarchically organized whole-brain patterns of dysconnectivity in schizophrenia spectrum disorders observed after personalized intrinsic network topography.

机构信息

Center for Addiction and Mental Health, Campbell Family Mental Health Research, Toronto, Ontario, Canada.

Department of Psychiatry, University of Toronto, Toronto, Ontario, USA.

出版信息

Hum Brain Mapp. 2023 Oct 15;44(15):5153-5166. doi: 10.1002/hbm.26453. Epub 2023 Aug 22.

Abstract

BACKGROUND

Spatial patterns of brain functional connectivity can vary substantially at the individual level. Applying cortical surface-based approaches with individualized rather than group templates may accelerate the discovery of biological markers related to psychiatric disorders. We investigated cortico-subcortical networks from multi-cohort data in people with schizophrenia spectrum disorders (SSDs) and healthy controls (HC) using individualized connectivity profiles.

METHODS

We utilized resting-state and anatomical MRI data from n = 406 participants (n = 203 SSD, n = 203 HC) from four cohorts. Functional timeseries were extracted from previously defined intrinsic network subregions of the striatum, thalamus, and cerebellum as well as 80 cortical regions of interest, representing six intrinsic networks using (1) volume-based approaches, (2) a surface-based group atlas approaches, and (3) Personalized Intrinsic Network Topography (PINT).

RESULTS

The correlations between all cortical networks and the expected subregions of the striatum, cerebellum, and thalamus were increased using a surface-based approach (Cohen's D volume vs. surface 0.27-1.00, all p < 10 ) and further increased after PINT (Cohen's D surface vs. PINT 0.18-0.96, all p < 10 ). In SSD versus HC comparisons, we observed robust patterns of dysconnectivity that were strengthened using a surface-based approach and PINT (Number of differing pairwise-correlations: volume: 404, surface: 570, PINT: 628, FDR corrected).

CONCLUSION

Surface-based and individualized approaches can more sensitively delineate cortical network dysconnectivity differences in people with SSDs. These robust patterns of dysconnectivity were visibly organized in accordance with the cortical hierarchy, as predicted by computational models.

摘要

背景

个体间脑功能连接的空间模式可能存在很大差异。应用基于皮质表面的个体化而不是基于群体模板的方法可能会加速发现与精神障碍相关的生物学标志物。我们使用个体化连接图谱,从精神分裂症谱系障碍(SSDs)患者和健康对照(HC)的多队列数据中研究了皮质-皮质下网络。

方法

我们利用了来自四个队列的 n = 406 名参与者(n = 203 SSD,n = 203 HC)的静息态和解剖 MRI 数据。从纹状体、丘脑和小脑的预先定义的内在网络亚区以及 80 个皮质感兴趣区提取功能时间序列,代表六个内在网络,使用(1)基于体积的方法、(2)基于表面的群体图谱方法和(3)个性化内在网络拓扑(PINT)。

结果

使用基于表面的方法,所有皮质网络与纹状体、小脑和丘脑的预期亚区之间的相关性增加(Cohen's D 体积与表面 0.27-1.00,所有 p < 10),在使用 PINT 后进一步增加(Cohen's D 表面与 PINT 0.18-0.96,所有 p < 10)。在 SSD 与 HC 的比较中,我们观察到使用基于表面的方法和 PINT 增强的连接紊乱的稳健模式(差异成对相关的数量:体积:404,表面:570,PINT:628,FDR 校正)。

结论

基于表面的个体化方法可以更敏感地描绘 SSD 患者皮质网络连接紊乱的差异。这些紊乱的连接模式明显按照皮质层次组织,这与计算模型的预测一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f95/10502662/ef1309b28af2/HBM-44-5153-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验