Ye Linda, Sun Yue, Sunko Veronika, Rodriguez-Nieva Joaquin F, Ikeda Matthias S, Worasaran Thanapat, Sorensen Matthew E, Bachmann Maja D, Orenstein Joseph, Fisher Ian R
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305.
Department of Applied Physics, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2023 Aug 29;120(35):e2302800120. doi: 10.1073/pnas.2302800120. Epub 2023 Aug 22.
The adiabatic elastocaloric effect measures the temperature change of a given system with strain and provides a thermodynamic probe of the entropic landscape in the temperature-strain space. Here, we demonstrate that the DC bias strain-dependence of AC elastocaloric effect allows decomposition of the latter into symmetric (rotation-symmetry-preserving) and antisymmetric (rotation-symmetry-breaking) strain channels, using a tetragonal [Formula: see text]-electron intermetallic DyB[Formula: see text]C[Formula: see text]-whose antiferroquadrupolar order breaks local fourfold rotational symmetries while globally remaining tetragonal-as a showcase example. We capture the strain evolution of its quadrupolar and magnetic phase transitions using both singularities in the elastocaloric coefficient and its jumps at the transitions, and the latter we show follows a modified Ehrenfest relation. We find that antisymmetric strain couples to the underlying order parameter in a biquadratic (linear-quadratic) manner in the antiferroquadrupolar (canted antiferromagnetic) phase, which are attributed to a preserved (broken) global tetragonal symmetry, respectively. The broken tetragonal symmetry in the magnetic phase is further evidenced by elastocaloric strain-hysteresis and optical birefringence. Additionally, within the staggered quadrupolar order, the observed elastocaloric response reflects a quadratic increase of entropy with antisymmetric strain, analogous to the role magnetic field plays for Ising antiferromagnetic orders by promoting pseudospin flips. Our results demonstrate AC elastocaloric effect as a compact and incisive thermodynamic probe into the coupling between electronic degrees of freedom and strain in free energy, which holds the potential for investigating and understanding the symmetry of a wide variety of ordered phases in broader classes of quantum materials.
绝热弹性热效应测量给定系统随应变的温度变化,并提供温度-应变空间中熵景观的热力学探针。在此,我们证明交流弹性热效应的直流偏置应变依赖性允许将其分解为对称(保持旋转对称性)和反对称(破坏旋转对称性)应变通道,我们以四方[化学式:见正文]电子金属间化合物DyB[化学式:见正文]C[化学式:见正文]为例进行展示,其反铁四极序打破了局部四重旋转对称性,而整体上仍保持四方性。我们利用弹性热系数中的奇点及其在转变处的跃变来捕捉其四极和磁相变的应变演化,并且我们表明后者遵循修正的埃伦费斯特关系。我们发现,反对称应变在反铁四极(倾斜反铁磁)相中以双二次(线性-二次)方式耦合到潜在的序参量,这分别归因于保持(破坏)的整体四方对称性。磁相中四方对称性的破坏通过弹性热应变滞后和光学双折射得到进一步证明。此外,在交错四极序内,观察到的弹性热响应反映出熵随反对称应变呈二次增加,类似于磁场通过促进伪自旋翻转对伊辛反铁磁序所起的作用。我们的结果表明,交流弹性热效应是一种紧凑而敏锐的热力学探针,可用于研究自由能中电子自由度与应变之间的耦合,这为研究和理解更广泛类别的量子材料中各种有序相的对称性具有潜力。