Dalui Amit, Ariga Katsuhiko, Acharya Somobrata
Department of Chemistry, Jogamaya Devi College, Kolkata-700026, India.
Graduate School of Frontier Sciences, The University of Tokyo Kashiwa, Chiba 277-8561, Japan.
Chem Commun (Camb). 2023 Sep 12;59(73):10835-10865. doi: 10.1039/d3cc02605a.
Colloidal semiconductor nanocrystals (NCs) have been extensively investigated owing to their unique properties induced by the quantum confinement effect. The advent of colloidal synthesis routes led to the design of stable colloidal NCs with uniform size, shape, and composition. Metal oxides, phosphides, and chalcogenides (ZnE, CdE, PbE, where E = S, Se, or Te) are few of the most important monocomponent semiconductor NCs, which show excellent optoelectronic properties. The ability to build quantum confined heterostructures comprising two or more semiconductor NCs offer greater customization and tunability of properties compared to their monocomponent counterparts. More recently, the halide perovskite NCs showed exceptional optoelectronic properties for energy generation and harvesting applications. Numerous applications including photovoltaic, photodetectors, light emitting devices, catalysis, photochemical devices, and solar driven fuel cells have demonstrated using these NCs in the recent past. Overall, semiconductor NCs prepared the colloidal synthesis route offer immense potential to become an alternative to the presently available device applications. This feature article will explore the progress of NCs syntheses with outstanding potential to control the shape and spatial dimensionality required for photovoltaic, light emitting diode, and photocatalytic applications. We also attempt to address the challenges associated with achieving high efficiency devices with the NCs and possible solutions including interface engineering, packing control, encapsulation chemistry, and device architecture engineering.
胶体半导体纳米晶体(NCs)因其量子限域效应所诱导的独特性质而受到了广泛研究。胶体合成路线的出现使得能够设计出尺寸、形状和组成均一的稳定胶体NCs。金属氧化物、磷化物和硫族化物(ZnE、CdE、PbE,其中E = S、Se或Te)是少数几种最重要的单组分半导体NCs,它们展现出优异的光电性能。与单组分NCs相比,构建包含两个或更多半导体NCs的量子限域异质结构的能力能够实现更大程度的性能定制和可调性。最近,卤化物钙钛矿NCs在能量产生和收集应用中表现出卓越的光电性能。在过去几年中,包括光伏、光电探测器、发光器件、催化、光化学器件以及太阳能驱动燃料电池在内的众多应用都已证明了使用这些NCs的可行性。总体而言,通过胶体合成路线制备的半导体NCs具有巨大的潜力,有望成为现有器件应用的替代品。这篇专题文章将探讨在控制光伏、发光二极管和光催化应用所需的形状和空间维度方面具有突出潜力的NCs合成进展。我们还试图解决与利用NCs实现高效器件相关的挑战以及可能的解决方案,包括界面工程、堆积控制、封装化学和器件架构工程。