Suppr超能文献

基于逆概率加权法的目标人群方差估计

On variance estimation of target population created by inverse probability weighting.

机构信息

Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China.

Hainan Institute of Real World Data, The Administration of Boao Lecheng International Medical Tourism Pilot Zone, Hainan, China.

出版信息

J Biopharm Stat. 2024 Aug;34(5):661-679. doi: 10.1080/10543406.2023.2244593. Epub 2023 Aug 24.

Abstract

Inverse probability weighting (IPW) is frequently used to reduce or minimize the observed confounding in observational studies. IPW creates a pseudo-sample by weighting each individual by the inverse of the conditional probability of receiving the treatment level that he/she has actually received. In the pseudo-sample there is no variation among the multiple individuals generated by weighting the same individual in the original sample. This would reduce the variability of the data and therefore bias the variance estimate in the target population. Conventional variance estimation methods for IPW estimators generally ignore this underestimation and tend to produce biased estimates of variance. We here propose a more reasonable method that incorporates this source of variability by using parametric bootstrapping based on intra-stratum variability estimates. This approach firstly uses propensity score stratification and intra-stratum standard deviation to approximate the variability among multiple individuals generated based on a single individual whose propensity score falls within the corresponding stratum. The parametric bootstrapping is then used to incorporate the target variability by re-generating outcomes after adding a random error term to the original data. The performance of the proposed method is compared with three existing methods including the naïve model-based variance estimator, the nonparametric bootstrap variance estimator, and the robust variance estimator in the simulation section. An example of patients with sarcopenia is used to illustrate the implementation of the proposed approach. According to the results, the proposed approach has desirable statistical properties and can be easily implemented using the provided R code.

摘要

逆概率加权(Inverse probability weighting,简称 IPW)常用于减少或最小化观察性研究中的观察性混杂。IPW 通过将每个个体的权重除以其实际接受的治疗水平的条件概率的倒数,来创建一个伪样本。在伪样本中,通过对原始样本中的同一个个体进行加权所产生的多个个体之间没有差异。这将减少数据的变异性,从而偏倚目标人群中的方差估计。用于 IPW 估计量的常规方差估计方法通常忽略这种低估,并且倾向于产生方差的有偏估计。我们在这里提出了一种更合理的方法,该方法通过使用基于层内变异性估计的参数自举来纳入这种变异性来源。该方法首先使用倾向评分分层和层内标准差来近似基于倾向评分落在相应层内的单个个体所产生的多个个体之间的变异性。然后,通过向原始数据添加随机误差项来重新生成结果,使用参数自举来纳入目标变异性。在模拟部分比较了所提出的方法与三种现有方法的性能,包括基于简单模型的方差估计量、非参数自举方差估计量和稳健方差估计量。使用肌少症患者的示例来说明所提出方法的实施。根据结果,所提出的方法具有理想的统计特性,并且可以使用提供的 R 代码轻松实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验