Suppr超能文献

颅颌面骨组织工程(BTE),第二部分:3D 打印支架在缺损修复中的转化潜力。

Bone Tissue Engineering (BTE) of the Craniofacial Skeleton, Part II: Translational Potential of 3D-Printed Scaffolds for Defect Repair.

机构信息

University of Miami Miller School of Medicine.

Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL.

出版信息

J Craniofac Surg. 2024;35(1):261-267. doi: 10.1097/SCS.0000000000009635. Epub 2023 Aug 25.

Abstract

Computer-aided design/computer-aided manufacturing and 3-dimensional (3D) printing techniques have revolutionized the approach to bone tissue engineering for the repair of craniomaxillofacial skeletal defects. Ample research has been performed to gain a fundamental understanding of the optimal 3D-printed scaffold design and composition to facilitate appropriate bone formation and healing. Benchtop and preclinical, small animal model testing of 3D-printed bioactive ceramic scaffolds augmented with pharmacological/biological agents have yielded promising results given their potential combined osteogenic and osteoinductive capacity. However, other factors must be evaluated before newly developed constructs may be considered analogous alternatives to the "gold standard" autologous graft for defect repair. More specifically, the 3D-printed bioactive ceramic scaffold's long-term safety profile, biocompatibility, and resorption kinetics must be studied. The ultimate goal is to successfully regenerate bone that is comparable in volume, density, histologic composition, and mechanical strength to that of native bone. In vivo studies of these newly developed bone tissue engineering in translational animal models continue to make strides toward addressing regulatory and clinically relevant topics. These include the use of skeletally immature animal models to address the challenges posed by craniomaxillofacial defect repair in pediatric patients. This manuscript reviews the most recent preclinical animal studies seeking to assess 3D-printed ceramic scaffolds for improved repair of critical-sized craniofacial bony defects.

摘要

计算机辅助设计/计算机辅助制造和三维(3D)打印技术彻底改变了颅颌面骨骼缺损修复的骨组织工程方法。已经进行了大量研究,以深入了解最佳的 3D 打印支架设计和组成,以促进适当的骨形成和愈合。在台式机和小型动物模型中,对 3D 打印生物活性陶瓷支架进行了测试,这些支架添加了药理学/生物学制剂,由于其潜在的成骨和诱导成骨能力,取得了有希望的结果。但是,在新开发的结构物可以被认为是缺陷修复的“金标准”自体移植物的类似替代物之前,还必须评估其他因素。更具体地说,必须研究 3D 打印生物活性陶瓷支架的长期安全性、生物相容性和吸收动力学。最终目标是成功再生与天然骨在体积、密度、组织学组成和机械强度方面相当的骨。这些新的骨组织工程在转化动物模型中的体内研究继续在解决监管和临床相关主题方面取得进展。其中包括使用骨骼未成熟的动物模型来解决儿科患者颅颌面缺损修复所带来的挑战。本文综述了最近的临床前动物研究,这些研究旨在评估 3D 打印陶瓷支架在改善临界尺寸颅面骨缺损修复中的作用。

相似文献

1
Bone Tissue Engineering (BTE) of the Craniofacial Skeleton, Part II: Translational Potential of 3D-Printed Scaffolds for Defect Repair.
J Craniofac Surg. 2024;35(1):261-267. doi: 10.1097/SCS.0000000000009635. Epub 2023 Aug 25.
2
Mineralized osteoblast-derived exosomes and 3D-printed ceramic-based scaffolds for enhanced bone healing: A preclinical exploration.
Acta Biomater. 2025 Jun 15;200:686-702. doi: 10.1016/j.actbio.2025.05.051. Epub 2025 May 21.
3
Comparison of Stromal Vascular Fraction and Passaged Adipose-Derived Stromal/Stem Cells as Point-of-Care Agents for Bone Regeneration.
Tissue Eng Part A. 2019 Nov;25(21-22):1459-1469. doi: 10.1089/ten.TEA.2018.0341. Epub 2019 Jun 14.
5
Vat photo-polymerization 3D printing of gradient scaffolds for osteochondral tissue regeneration.
Acta Biomater. 2025 Jun 15;200:67-86. doi: 10.1016/j.actbio.2025.05.042. Epub 2025 May 23.
7
Preliminary Application Research of 3D Bioprinting in Craniofacial Reconstruction.
J Craniofac Surg. 2023;34(2):805-808. doi: 10.1097/SCS.0000000000009113. Epub 2022 Dec 19.
8
Carbon nanotube bacterial cellulose polycaprolactone scaffolds for bone tissue engineering using top-heating fused deposition three-dimensional printing.
Int J Biol Macromol. 2025 Jul;318(Pt 1):144588. doi: 10.1016/j.ijbiomac.2025.144588. Epub 2025 May 26.
10
An in silico study reveals how architectural and mechanical cues jointly regulate angiogenesis and bone regeneration in 3D printed scaffolds.
Comput Biol Med. 2025 Sep;195:110574. doi: 10.1016/j.compbiomed.2025.110574. Epub 2025 Jun 18.

引用本文的文献

本文引用的文献

1
Engineering 3D Printed Bioceramic Scaffolds to Reconstruct Critical-Sized Calvaria Defects in a Skeletally Immature Pig Model.
Plast Reconstr Surg. 2023 Aug 1;152(2):270e-280e. doi: 10.1097/PRS.0000000000010258. Epub 2023 Feb 1.
2
Maxillary Total Elongation Surgery using 3D Virtual Surgery, CAD/CAM and 3D Printing Technology: Surgical Convenience and Accuracy.
J Craniofac Surg. 2022 Oct 1;33(7):2172-2177. doi: 10.1097/SCS.0000000000008757. Epub 2022 Aug 17.
3
Augmentation Rhinoplasty in Cleft Lip Nasal Deformity Using Alloplastic Material and Autologous Cartilage.
J Craniofac Surg. 2022;33(8):e883-e886. doi: 10.1097/SCS.0000000000008848. Epub 2022 Aug 3.
4
Bone Tissue Engineering Using Osteogenic Cells: From the Bench to the Clinical Application.
Tissue Eng Part C Methods. 2022 May;28(5):179-192. doi: 10.1089/ten.TEC.2022.0021.
5
Implementation of 3D Printing and Computer-Aided Design and Manufacturing (CAD/CAM) in Craniofacial Reconstruction.
J Craniofac Surg. 2022 Sep 1;33(6):1714-1719. doi: 10.1097/SCS.0000000000008561. Epub 2022 Feb 14.
7
Transforming the Degradation Rate of β-tricalcium Phosphate Bone Replacement Using 3-Dimensional Printing.
Ann Plast Surg. 2021 Dec 1;87(6):e153-e162. doi: 10.1097/SAP.0000000000002965.
9
A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro.
Mater Sci Eng C Mater Biol Appl. 2021 Apr;123:111976. doi: 10.1016/j.msec.2021.111976. Epub 2021 Feb 15.
10
Three-Dimensionally-Printed Bioactive Ceramic Scaffolds: Construct Effects on Bone Regeneration.
J Craniofac Surg. 2021 May 1;32(3):1177-1181. doi: 10.1097/SCS.0000000000007146.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验