文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习算法在前列腺癌患者中用于肿瘤分割和临床显著癌症的鉴别。

Deep Learning Algorithm for Tumor Segmentation and Discrimination of Clinically Significant Cancer in Patients with Prostate Cancer.

机构信息

Department of Radiology, Inje University, College of Medicine, Haeundae Paik Hospital, Busan 48108, Republic of Korea.

Deepnoid Co., Ltd., Seoul 08376, Republic of Korea.

出版信息

Curr Oncol. 2023 Aug 1;30(8):7275-7285. doi: 10.3390/curroncol30080528.


DOI:10.3390/curroncol30080528
PMID:37623009
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10453750/
Abstract

BACKGROUND: We investigated the feasibility of a deep learning algorithm (DLA) based on apparent diffusion coefficient (ADC) maps for the segmentation and discrimination of clinically significant cancer (CSC, Gleason score ≥ 7) from non-CSC in patients with prostate cancer (PCa). METHODS: Data from a total of 149 consecutive patients who had undergone 3T-MRI and been pathologically diagnosed with PCa were initially collected. The labelled data (148 images for GS6, 580 images for GS7) were applied for tumor segmentation using a convolutional neural network (CNN). For classification, 93 images for GS6 and 372 images for GS7 were used. For external validation, 22 consecutive patients from five different institutions (25 images for GS6, 70 images for GS7) representing different MR machines were recruited. RESULTS: Regarding segmentation and classification, U-Net and DenseNet were used, respectively. The tumor Dice scores for internal and external validation were 0.822 and 0.7776, respectively. As for classification, the accuracies of internal and external validation were 73 and 75%, respectively. For external validation, diagnostic predictive values for CSC (sensitivity, specificity, positive predictive value and negative predictive value) were 84, 48, 82 and 52%, respectively. CONCLUSIONS: Tumor segmentation and discrimination of CSC from non-CSC is feasible using a DLA developed based on ADC maps (b2000) alone.

摘要

背景:我们研究了一种基于表观扩散系数 (ADC) 图的深度学习算法 (DLA) ,用于对前列腺癌 (PCa) 患者中临床显著癌症 (CSC,Gleason 评分≥7) 与非 CSC 的分割和区分的可行性。

方法:共收集了 149 例连续接受 3T-MRI 检查并经病理诊断为 PCa 的患者的数据。使用卷积神经网络 (CNN) 对标记数据 (GS6 图像 148 张,GS7 图像 580 张) 进行肿瘤分割。用于分类的有 GS6 图像 93 张,GS7 图像 372 张。为了外部验证,从五个不同机构招募了 22 例连续患者(GS6 图像 25 张,GS7 图像 70 张),代表不同的磁共振机器。

结果:分别使用 U-Net 和 DenseNet 进行分割和分类。内部和外部验证的肿瘤 Dice 评分分别为 0.822 和 0.7776。对于分类,内部和外部验证的准确率分别为 73%和 75%。对于外部验证,CSC 的诊断预测值(敏感性、特异性、阳性预测值和阴性预测值)分别为 84%、48%、82%和 52%。

结论:仅使用基于 ADC 图(b2000)的 DLA 即可实现肿瘤的分割和 CSC 与非 CSC 的区分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9996/10453750/2f9655f2f068/curroncol-30-00528-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9996/10453750/cf691f701657/curroncol-30-00528-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9996/10453750/495b5d402a5a/curroncol-30-00528-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9996/10453750/10a8cd0bea44/curroncol-30-00528-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9996/10453750/9e54b6eb9330/curroncol-30-00528-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9996/10453750/e1fc81fb0ee9/curroncol-30-00528-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9996/10453750/2f9655f2f068/curroncol-30-00528-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9996/10453750/cf691f701657/curroncol-30-00528-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9996/10453750/495b5d402a5a/curroncol-30-00528-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9996/10453750/10a8cd0bea44/curroncol-30-00528-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9996/10453750/9e54b6eb9330/curroncol-30-00528-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9996/10453750/e1fc81fb0ee9/curroncol-30-00528-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9996/10453750/2f9655f2f068/curroncol-30-00528-g006.jpg

相似文献

[1]
Deep Learning Algorithm for Tumor Segmentation and Discrimination of Clinically Significant Cancer in Patients with Prostate Cancer.

Curr Oncol. 2023-8-1

[2]
Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network.

Eur Radiol. 2019-8-29

[3]
Test-retest repeatability of a deep learning architecture in detecting and segmenting clinically significant prostate cancer on apparent diffusion coefficient (ADC) maps.

Eur Radiol. 2021-1

[4]
Fully automated detection of prostate transition zone tumors on T2-weighted and apparent diffusion coefficient (ADC) map MR images using U-Net ensemble.

Med Phys. 2021-11

[5]
Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment.

Radiology. 2019-10-8

[6]
Fully Automatic Segmentation of Acute Ischemic Lesions on Diffusion-Weighted Imaging Using Convolutional Neural Networks: Comparison with Conventional Algorithms.

Korean J Radiol. 2019-8

[7]
Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.

Eur Radiol. 2020-3

[8]
Automatic intraprostatic lesion segmentation in multiparametric magnetic resonance images with proposed multiple branch UNet.

Med Phys. 2020-12

[9]
Development and validation of the 3D U-Net algorithm for segmentation of pelvic lymph nodes on diffusion-weighted images.

BMC Med Imaging. 2021-11-13

[10]
Comparison of diagnostic performance between diffusion kurtosis imaging parameters and mono-exponential ADC for determination of clinically significant cancer in patients with prostate cancer.

Abdom Radiol (NY). 2020-12

引用本文的文献

[1]
Deep Learning Techniques for Prostate Cancer Analysis and Detection: Survey of the State of the Art.

J Imaging. 2025-7-28

[2]
The Role of Radiomics in the Prediction of Clinically Significant Prostate Cancer in the PI-RADS v2 and v2.1 Era: A Systematic Review.

Cancers (Basel). 2024-8-24

本文引用的文献

[1]
NCCN Guidelines® Insights: Prostate Cancer, Version 1.2023.

J Natl Compr Canc Netw. 2022-12

[2]
A Novel Deep Learning Based Computer-Aided Diagnosis System Improves the Accuracy and Efficiency of Radiologists in Reading Biparametric Magnetic Resonance Images of the Prostate: Results of a Multireader, Multicase Study.

Invest Radiol. 2021-10-1

[3]
Why Is a b-value Range of 1500-2000 s/mm² Optimal for Evaluating Prostatic Index Lesions on Synthetic Diffusion-Weighted Imaging?

Korean J Radiol. 2021-6

[4]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[5]
PI-RADS Versions 2 and 2.1: Interobserver Agreement and Diagnostic Performance in Peripheral and Transition Zone Lesions Among Six Radiologists.

AJR Am J Roentgenol. 2021-7

[6]
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.

Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018-9

[7]
Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI.

Eur Radiol. 2020-12

[8]
Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment.

Radiology. 2019-10-8

[9]
A Deep Learning-Based Approach for the Detection and Localization of Prostate Cancer in T2 Magnetic Resonance Images.

J Digit Imaging. 2019-10

[10]
Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI.

Abdom Radiol (NY). 2019-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索