Suppr超能文献

贝塔变形菌是表面水生物滤池的一个关键组成部分,它能够在进水温度波动的情况下维持持续的锰去除效果。

Betaproteobacteria are a key component of surface water biofilters that maintain sustained manganese removal in response to fluctuations in influent water temperature.

机构信息

Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS, Canada.

Centre for Water Resources Studies, Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS, Canada.

出版信息

Water Res. 2023 Oct 1;244:120515. doi: 10.1016/j.watres.2023.120515. Epub 2023 Aug 21.

Abstract

The health risks associated with manganese (Mn) in drinking water, and an improved understanding of Mn accumulation within, and subsequent release from, distribution systems, have increased the need for robust, sustainable treatment options to minimize Mn concentrations in finished water. Biofiltration is an established and effective method to remove Mn in groundwater however, Mn removal in surface water biofilters is an emerging treatment process that has not been extensively studied. Seasonal variations in water temperature can present an operational challenge for surface water biofilters which may see reduced Mn removal under colder conditions. This study examined the microbiomes of surface water biofilters at three utilities (ACWD WTP, WTP B, and WTP D) which all experienced similar seasonal fluctuations in influent water temperature. High Mn removal was observed at the ACWD WTP for much of the year, but Mn removal decreased with a concurrent decrease in the influent water temperature (58% ± 22%). In contrast, both WTP B and WTP D achieved year-round Mn removal (84% ± 5% and 93% ± 8% respectively). Marker gene (16S rRNA) sequencing analysis of the biofilter microbiomes identified a high abundance of Betaproteobacteria in WTP B and WTP D (37% ± 12% and 21% ± 3% respectively), but a low abundance of Betaproteobacteria in the ACWD WTP (2% ± 2%). The microbiomes of new bench-scale biofilters, in operation at the ACWD WTP, were also investigated. The abundance of Betaproteobacteria was significantly greater (p < 0.05) after the biofilters had acclimated than before acclimation, and differential abundance analysis identified 6 genera within the Betaproteobacteria class were enriched in the acclimated microbiome. Additionally, the acclimated biofilters were able to maintain high Mn removal performance (87% ± 10%) when the influent water temperature decreased to 10 °C or less. Further analysis of previously published studies found the abundance of Betaproteobacteria was also significantly greater (p < 0.001) in biofilters with sustained Mn removal than in biofilters which did not treat for Mn as a contaminant, despite differences in design scale, source water, and media type. Microbiome network analysis identified multiple co-occurrence relationships between Betaproteobacteria and Mn oxidizing bacteria in the WTP B and WTP D biofilters, suggesting indirect contributions by Betaproteobacteria to biological Mn oxidation. These co-occurrence relationships were not present in the full-scale ACWD WTP microbiome. Whether the role of Betaproteobacteria in biological Mn oxidation is direct, indirect, or a combination of both, they are consistently present at a high abundance in both groundwater and surface water biofilters with sustained Mn removal, and their absence may contribute to the seasonal fluctuations in Mn removal observed at the ACWD WTP. This new insight to Betaproteobacteria and their role in Mn biofiltration could contribute to water innovation and design that would improve the reliability of Mn removal.

摘要

饮用水中锰(Mn)的健康风险,以及对 Mn 在分配系统内积累和随后释放的更深入了解,增加了对稳健、可持续处理方案的需求,以最大限度地降低饮用水中的 Mn 浓度。生物过滤是一种成熟且有效的地下水除锰方法,然而,地表水生物滤池中的 Mn 去除是一种新兴的处理工艺,尚未得到广泛研究。水温的季节性变化可能对地表水生物滤池的运行带来挑战,在较冷的条件下,生物滤池的 Mn 去除率可能会降低。本研究考察了三个水厂(ACWD 水厂、WTPB 水厂和 WTPD 水厂)地表水生物滤池的微生物组,这三个水厂的进水水温均经历了相似的季节性波动。在一年中的大部分时间里,ACWD 水厂的高 Mn 去除率,但随着进水水温的降低(58%±22%),Mn 去除率也随之降低。相比之下,WTPB 水厂和 WTPD 水厂全年都能实现 Mn 去除(分别为 84%±5%和 93%±8%)。对生物滤池微生物组的标记基因(16S rRNA)测序分析表明,WTPB 水厂和 WTPD 水厂的 Betaproteobacteria 丰度较高(分别为 37%±12%和 21%±3%),而 ACWD 水厂的 Betaproteobacteria 丰度较低(2%±2%)。还对在 ACWD 水厂运行的新的实验室规模生物滤池的微生物组进行了研究。生物滤池驯化后,Betaproteobacteria 的丰度明显更高(p<0.05),差异丰度分析鉴定出 Betaproteobacteria 类中的 6 个属在驯化微生物组中富集。此外,当进水温度降至 10°C 或以下时,驯化后的生物滤池仍能保持较高的 Mn 去除性能(87%±10%)。对先前发表的研究进行进一步分析发现,与未将 Mn 作为污染物处理的生物滤池相比,持续去除 Mn 的生物滤池中 Betaproteobacteria 的丰度也显著更高(p<0.001),尽管设计规模、水源和介质类型存在差异。微生物组网络分析鉴定出 WTPB 水厂和 WTPD 水厂的 Betaproteobacteria 与 Mn 氧化菌之间存在多种共生关系,表明 Betaproteobacteria 对生物 Mn 氧化有间接贡献。在全规模的 ACWD 水厂微生物组中不存在这些共生关系。Betaproteobacteria 在生物 Mn 氧化中的作用是直接的、间接的,还是两者的结合,它们在具有持续 Mn 去除能力的地下水和地表水生物滤池中都以高丰度存在,而它们的缺失可能导致了 ACWD 水厂 Mn 去除的季节性波动。对 Betaproteobacteria 及其在 Mn 生物过滤中的作用的新认识,可能有助于推动水创新和设计,提高 Mn 去除的可靠性。

相似文献

3
Biological and physico-chemical mechanisms accelerating the acclimation of Mn-removing biofilters.
Water Res. 2021 Dec 1;207:117793. doi: 10.1016/j.watres.2021.117793. Epub 2021 Oct 23.
4
Effect of drinking water treatment process parameters on biological removal of manganese from surface water.
Water Res. 2014 Dec 1;66:31-39. doi: 10.1016/j.watres.2014.08.006. Epub 2014 Aug 14.
6
Microbial communities and biogenic Mn-oxides in an on-site biofiltration system for cold Fe-(II)- and Mn(II)-rich groundwater treatment.
Sci Total Environ. 2020 Mar 25;710:136386. doi: 10.1016/j.scitotenv.2019.136386. Epub 2020 Jan 2.
7
Raw water biofiltration for surface water manganese control.
Sci Rep. 2023 Jun 3;13(1):9020. doi: 10.1038/s41598-023-36348-1.
9
Investigation of biotransformation, sorption, and desorption of multiple chemical contaminants in pilot-scale drinking water biofilters.
Chemosphere. 2018 Jun;200:248-256. doi: 10.1016/j.chemosphere.2018.02.107. Epub 2018 Feb 19.
10
Microbial stratification and DOM removal in drinking water biofilters: Implications for enhanced performance.
Water Res. 2024 Sep 15;262:122053. doi: 10.1016/j.watres.2024.122053. Epub 2024 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验