Suppr超能文献

从氯化亚铁到磁铁矿的固态施科反应,析氢是动力学瓶颈。

Solid-State Schikorr Reaction from Ferrous Chloride to Magnetite with Hydrogen Evolution as the Kinetic Bottleneck.

作者信息

Yamamoto Masanori, Takamura Yota, Kokubo Yoshiaki, Urushihara Makoto, Horiuchi Nobutake, Dai Wenbin, Hayasaka Yuichiro, Kita Eiji, Takao Koichiro

机构信息

Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan.

Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan.

出版信息

Inorg Chem. 2023 Sep 11;62(36):14580-14589. doi: 10.1021/acs.inorgchem.3c01676. Epub 2023 Aug 28.

Abstract

The selective formation of meta-stable FeO from ferrous sources by suppressing its oxidative conversion to the most stable hematite (α-FeO) is challenging under oxidative conditions for solid-state synthesis. In this work, we investigated the conversion of iron(II) chloride (FeCl) to magnetite (FeO) under inert atmosphere in the presence of steam, and the obtained oxides were analyzed by atomic-resolution TEM, Fe Mössbauer spectroscopy, and the Verwey transition temperature (). The reaction proceeded in two steps, with HO as the oxide source in the initial step and as an oxidant in the second step. The initial hydrolysis occurred at temperatures higher than 120 °C to release gaseous HCl, substituting lattice chloride Cl with oxide O, to give iron oxide intermediates. In the first step, the construction of the intermediate oxides was not topotactic. The second step as a kinetic bottleneck occurred at temperatures higher than 350 °C to generate gaseous H through the oxidation of Fe by H. A substantially large kinetic isotope effect (KIE) was observed for the second step at 500 °C, and this indicates the rate-determining step is the hydrogen evolution. Quantitative analysis of evolved H revealed that full conversion of ferrous chloride to magnetite at 500 °C was followed by additional oxidation of the outer sphere of magnetite to give a FeO phase, as supported by X-ray photoelectron spectroscopy (XPS), and the outer phase confined the conductive magnetite phase within the insulating layers, enabling kinetic control of magnetite synthesis. As such, the reaction stopped at meta-stable magnetite with an excellent saturation magnetization (σ) of 86 emu g and > 120 K without affording the thermodynamically stable α-FeO as the major final product. The study also discusses the influence of parameters such as reaction temperature, initial grain size of FeCl, the extent of hydration, and partial pressure of HO.

摘要

在氧化条件下通过抑制亚铁源向最稳定的赤铁矿(α-Fe₂O₃)的氧化转化来选择性地形成亚稳态Fe₃O₄,对于固态合成而言具有挑战性。在这项工作中,我们研究了在惰性气氛且存在水蒸气的情况下氯化亚铁(FeCl₂)向磁铁矿(Fe₃O₄)的转化过程,并且通过原子分辨率透射电子显微镜、Fe穆斯堡尔谱以及韦尔韦转变温度对所得氧化物进行了分析。该反应分两步进行,第一步中H₂O作为氧化物源,第二步中作为氧化剂。初始水解发生在高于120℃的温度下,以释放气态HCl,用氧化物O取代晶格氯Cl,从而得到氧化铁中间体。在第一步中,中间氧化物的构建不是拓扑化学的。第二步作为动力学瓶颈发生在高于350℃的温度下,通过H₂O对Fe的氧化产生气态H₂。在500℃时第二步观察到了显著的动力学同位素效应(KIE),这表明速率决定步骤是氢气析出。对析出的H₂进行定量分析表明,在500℃时氯化亚铁完全转化为磁铁矿之后,磁铁矿的外球会进一步氧化,从而得到Fe₂O₃相,X射线光电子能谱(XPS)支持了这一点,并且外层相将导电的磁铁矿相限制在绝缘层内,从而实现对磁铁矿合成的动力学控制。因此,反应在具有86 emu g出色饱和磁化强度(σ)且θ >120 K的亚稳态磁铁矿处停止,而没有得到热力学稳定的α-Fe₂O₃作为主要最终产物。该研究还讨论了诸如反应温度、FeCl₂的初始晶粒尺寸、水合程度以及H₂O的分压等参数的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验