Laboratoire de Mathématiques (LAMA), Université Savoie Mont Blanc, CNRS, 73376 Le Bourget du Lac, France.
Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy.
J Phys Chem B. 2023 Sep 7;127(35):7571-7580. doi: 10.1021/acs.jpcb.3c04592. Epub 2023 Aug 29.
Describing protein dynamical networks through amino acid contacts is a powerful way to analyze complex biomolecular systems. However, due to the size of the systems, identifying the relevant features of protein-weighted graphs can be a difficult task. To address this issue, we present the connected component analysis (CCA) approach that allows for fast, robust, and unbiased analysis of dynamical perturbation contact networks (DPCNs). We first illustrate the CCA method as applied to a prototypical allosteric enzyme, the imidazoleglycerol phosphate synthase (IGPS) enzyme from bacteria. This approach was shown to outperform the clustering methods applied to DPCNs, which could not capture the propagation of the allosteric signal within the protein graph. On the other hand, CCA reduced the DPCN size, providing connected components that nicely describe the allosteric propagation of the signal from the effector to the active sites of the protein. By applying the CCA to the IGPS enzyme in different conditions, i.e., at high temperature and from another organism (yeast IGPS), and to a different enzyme, i.e., a protein kinase, we demonstrated how CCA of DPCNs is an effective and transferable tool that facilitates the analysis of protein-weighted networks.
通过氨基酸接触来描述蛋白质动态网络是分析复杂生物分子系统的一种有效方法。然而,由于系统的规模庞大,识别蛋白质加权图的相关特征可能是一项艰巨的任务。为了解决这个问题,我们提出了连通分量分析(CCA)方法,该方法可用于快速、稳健且无偏地分析动态扰动接触网络(DPCN)。我们首先将 CCA 方法应用于一个典型的别构酶,即细菌中的咪唑甘油磷酸合酶(IGPS)酶。该方法在性能上优于应用于 DPCN 的聚类方法,因为后者无法捕捉蛋白质图内别构信号的传播。另一方面,CCA 减小了 DPCN 的大小,提供了连接组件,这些组件很好地描述了信号从效应物到蛋白质活性位点的别构传播。通过在不同条件下(即高温和来自另一种生物体(酵母 IGPS)的条件下)以及在不同的酶(即蛋白激酶)中应用 CCA 于 IGPS 酶,我们证明了 DPCN 的 CCA 是一种有效且可转移的工具,可促进蛋白质加权网络的分析。