Cao Qun, Li Zirui, Cui Zheng
Shandong Institute of Advanced Technology, Jinan 250100, Shandong, China.
Institute of Advanced Technology, Shandong University, Jinan 250061, Shandong, China.
Langmuir. 2023 Sep 12;39(36):12754-12761. doi: 10.1021/acs.langmuir.3c01483. Epub 2023 Aug 30.
Surface roughness is one of the significant factors affecting liquid-vapor phase change heat transfer. This paper explores the effect of surface roughness on bubble nucleation and boiling heat transfer, as well as the microscopic mechanism, by constructing random rough surfaces using molecular dynamics (MD) simulation. Bubbles randomly nucleate on a flat surface and tend to nucleate in pits on rough surfaces. The pits on the random rough surface gather more argon atoms than the protrusions, forming low potential energy regions on the surface, thus providing stable nucleation sites for bubbles. As the surface roughness increases, bubble generation, merging, and growth are advanced. In addition, rough surfaces offer a larger effective heat transfer area for the heat transfer process, increase the strength of solid-liquid coupling, and obtain smaller solid-liquid interaction energy. The critical heat flux (CHF) value positively correlates with surface roughness. As the roughness increases, the surface superheat at the onset of CHF decreases accordingly. This paper provides new insights into the mechanism of heat transfer enhancement on rough surfaces and surface design in thermal management.
表面粗糙度是影响液-气相变传热的重要因素之一。本文通过分子动力学(MD)模拟构建随机粗糙表面,探讨表面粗糙度对气泡成核和沸腾传热的影响及其微观机制。气泡在平坦表面上随机成核,而在粗糙表面上倾向于在凹坑中成核。随机粗糙表面上的凹坑比凸起聚集更多的氩原子,在表面形成低势能区域,从而为气泡提供稳定的成核位点。随着表面粗糙度的增加,气泡的产生、合并和生长提前。此外,粗糙表面为传热过程提供了更大的有效传热面积,增强了固液耦合强度,并获得更小的固液相互作用能。临界热流密度(CHF)值与表面粗糙度呈正相关。随着粗糙度的增加,CHF开始时的表面过热度相应降低。本文为粗糙表面强化传热机理及热管理中的表面设计提供了新的见解。