Suppr超能文献

芬顿铁泥通过改变厌氧微生物的微环境来增强污泥产甲烷作用。

Enhancing sludge methanogenesis with changed micro-environment of anaerobic microorganisms by Fenton iron mud.

机构信息

Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin, 300457, China.

College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

出版信息

Chemosphere. 2023 Nov;341:139884. doi: 10.1016/j.chemosphere.2023.139884. Epub 2023 Aug 28.

Abstract

Conductive materials have been demonstrated to enhance sludge methanogenesis, but few researches have concentrated on the interaction among conductive materials, microorganisms and their immediate living environment. In this study, Fenton iron mud with a high abundance of Fe(III) was recycled and applied in anaerobic reactors to promote anaerobic digestion (AD) process. The results show that the primary content of extracellular polymeric substances (EPS) such as polysaccharides and proteins increased significantly, possibly promoting microbial aggregation. Furthermore, with the increment of redox mediators including humic substances in EPS and Fe(III) introduced by Fenton iron mud, the direct interspecies electron transfer (DIET) between methanogens and interacting bacteria could be accelerated, which enhanced the rate of methanogenesis in anaerobic digestion (35.21 ± 4.53% increase compared to the control). The further analysis of the anaerobic microbial community confirmed the fact that Fenton iron mud enriched functional microorganisms, such as the abundance of CO-reducing (e.g. Chloroflexi) and Fe(III)-reducing bacteria (e.g., Tepidimicrobium), thereby expediting the electron transfer reaction in the AD process via microbial DIET and dissimilatory iron reduction (DIR). This work will make it possible for using the recycled hazardous material - Fenton iron mud to improve the performance of anaerobic granular sludge during methanogenesis.

摘要

导电材料已被证明可以增强污泥产甲烷作用,但很少有研究集中于导电材料、微生物及其直接生存环境之间的相互作用。在这项研究中,高浓度 Fe(III)的芬顿铁泥被回收并应用于厌氧反应器中以促进厌氧消化(AD)过程。结果表明,细胞外聚合物(EPS)的主要成分(如多糖和蛋白质)显著增加,可能促进了微生物的聚集。此外,随着芬顿铁泥带来的 EPS 中包括腐殖质在内的氧化还原介质和 Fe(III)的增加,产甲烷菌和相互作用细菌之间的直接种间电子转移(DIET)可以加速,从而提高了厌氧消化中的产甲烷速率(与对照相比增加了 35.21±4.53%)。对厌氧微生物群落的进一步分析证实了芬顿铁泥富集功能微生物的事实,例如 CO 还原菌(如绿屈挠菌)和 Fe(III)还原菌(如嗜热微菌)的丰度增加,从而通过微生物 DIET 和异化铁还原(DIR)加快 AD 过程中的电子转移反应。这项工作将使利用回收的危险材料-芬顿铁泥来提高厌氧颗粒污泥在产甲烷过程中的性能成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验