Suppr超能文献

视网膜结构和血管测量的结合提高了多发性硬化症患者的鉴别能力。

Combining retinal structural and vascular measurements improves discriminative power for multiple sclerosis patients.

机构信息

Department of Ophthalmology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.

Department of Ophthalmology, Ophthalmology Emergency Hospital, Bucharest, Romania.

出版信息

Ann N Y Acad Sci. 2023 Nov;1529(1):72-83. doi: 10.1111/nyas.15060. Epub 2023 Sep 1.

Abstract

Data on how retinal structural and vascular parameters jointly influence the diagnostic performance of detection of multiple sclerosis (MS) patients without optic neuritis (MSNON) are lacking. To investigate the diagnostic performance of structural and vascular changes to detect MSNON from controls, we performed a cross-sectional study of 76 eyes from 51 MS participants and 117 eyes from 71 healthy controls. Retinal macular ganglion cell complex (GCC), retinal nerve fiber layer (RNFL) thicknesses, and capillary densities from the superficial (SCP) and deep capillary plexuses (DCP) were obtained from the Cirrus AngioPlex. The best structural parameter for detecting MS was compensated RNFL from the optic nerve head (AUC = 0.85), followed by GCC from the macula (AUC = 0.79), while the best vascular parameter was the SCP (AUC = 0.66). Combining structural and vascular parameters improved the diagnostic performance for MS detection (AUC = 0.90; p<0.001). Including both structure and vasculature in the joint model considerably improved the discrimination between MSNON and normal controls compared to each parameter separately (p = 0.027). Combining optical coherence tomography (OCT)-derived structural metrics and vascular measurements from optical coherence tomography angiography (OCTA) improved the detection of MSNON. Further studies may be warranted to evaluate the clinical utility of OCT and OCTA parameters in the prediction of disease progression.

摘要

关于视网膜结构和血管参数如何共同影响多发性硬化症(MS)无视神经炎(MSNON)患者的诊断性能的数据尚缺乏。为了研究结构和血管变化对检测 MSNON 的诊断性能,我们对 51 名 MS 参与者的 76 只眼和 71 名健康对照者的 117 只眼进行了横断面研究。从 Cirrus AngioPlex 获取视网膜黄斑神经节细胞复合体(GCC)、视网膜神经纤维层(RNFL)厚度以及浅层(SCP)和深层毛细血管丛(DCP)的毛细血管密度。检测 MS 的最佳结构参数是视神经头补偿的 RNFL(AUC = 0.85),其次是黄斑的 GCC(AUC = 0.79),而最佳血管参数是 SCP(AUC = 0.66)。联合结构和血管参数可提高 MS 检测的诊断性能(AUC = 0.90;p<0.001)。与单独的参数相比,将结构和血管都包含在联合模型中可以极大地改善 MSNON 和正常对照组之间的鉴别能力(p = 0.027)。将光学相干断层扫描(OCT)衍生的结构指标与光学相干断层扫描血管造影(OCTA)的血管测量相结合,提高了 MSNON 的检测效果。可能需要进一步的研究来评估 OCT 和 OCTA 参数在预测疾病进展中的临床应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验