Chen Yao, Sun Lu, Li Yiwang, Cao Yu, Guan Wen, Pan Jianming, Zhang Zehui, Zhang Yunlei
School of the Environment and Safety, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, P. R. China.
Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, P. R. China.
Inorg Chem. 2023 Sep 18;62(37):15277-15292. doi: 10.1021/acs.inorgchem.3c02473. Epub 2023 Sep 1.
The construction of strong metal-support interactions in oxide-supported noble metal nanocatalysts has been considered an emerging and efficient way in improving catalytic performance in biomass-upgrading reactions. Herein, a citric acid (CA)-assisted synthesized ZrO layer with improved oxygen vacancy (O) concentrations on a natural clay mineral of halloysite nanotubes (HNTs) was designed. Moreover, AuPd/ZrO@HNTs-zCA catalysts were prepared by loading AuPd bimetal and employed for aerobic oxidation of the lignocellulosic biomass-derived 5-hydroxymethylfurfural (HMF) platform to the bioplastic monomer 2,5-furandicarboxylic acid (FDCA) with water as the solvent. The results of catalytic experiments revealed that the AuPd/ZrO@HNTs-1.0CA catalyst exhibited excellent catalytic activity at 0.5 MPa O, with a satisfactory FDCA yield of 99.5% and outstanding FDCA formation rate of 1057.9 mmol·g·h. The improved O concentration in the ZrO support enhanced the adsorption and activation ability of the catalyst for O, and a higher Lewis acid concentration provided a stronger adsorption ability of the catalyst for reaction substrates. Besides, the synergistic effect of AuPd bimetallic nanoparticles steered the tandem oxidation of aldehyde and alcohol groups in HMF and accelerated the rate-determining step. More importantly, the relationship between the O concentration and catalytic performance also demonstrated that the enhanced catalytic activity for HMF oxidation was mainly attributed to the active interface of AuPd-ZrO. This work offers fresh insights into rationally designing oxygen vacancy-driven strong interactions between the oxide support and noble nanoparticles for the catalytic upgrade of biomass platform chemicals.
在氧化物负载的贵金属纳米催化剂中构建强金属-载体相互作用,被认为是提高生物质升级反应催化性能的一种新兴且有效的方法。在此,设计了一种在天然粘土矿物埃洛石纳米管(HNTs)上通过柠檬酸(CA)辅助合成的、具有改善的氧空位(O)浓度的ZrO层。此外,通过负载AuPd双金属制备了AuPd/ZrO@HNTs-zCA催化剂,并将其用于以水为溶剂将木质纤维素生物质衍生的5-羟甲基糠醛(HMF)平台有氧氧化为生物塑料单体2,5-呋喃二甲酸(FDCA)。催化实验结果表明,AuPd/ZrO@HNTs-1.0CA催化剂在0.5 MPa O₂下表现出优异的催化活性,FDCA产率达到99.5%,FDCA生成速率高达1057.9 mmol·g⁻¹·h⁻¹。ZrO载体中改善的O浓度增强了催化剂对O₂的吸附和活化能力,较高的路易斯酸浓度提供了催化剂对反应底物更强的吸附能力。此外,AuPd双金属纳米颗粒的协同作用引导了HMF中醛基和醇基的串联氧化,并加速了速率决定步骤。更重要的是,O浓度与催化性能之间的关系还表明,HMF氧化催化活性的增强主要归因于AuPd-ZrO的活性界面。这项工作为合理设计氧空位驱动的氧化物载体与贵金属纳米颗粒之间的强相互作用以实现生物质平台化学品的催化升级提供了新的见解。