Zhang Wei-Yong, He Ming-Gen, Sun Hui, Zheng Yong-Guang, Liu Ying, Luo An, Wang Han-Yi, Zhu Zi-Hang, Qiu Pei-Yue, Shen Ying-Chao, Wang Xuan-Kai, Lin Wan, Yu Song-Tao, Li Bin-Chen, Xiao Bo, Li Meng-Da, Yang Yu-Meng, Jiang Xiao, Dai Han-Ning, Zhou You, Ma Xiongfeng, Yuan Zhen-Sheng, Pan Jian-Wei
Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China.
CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China.
Phys Rev Lett. 2023 Aug 18;131(7):073401. doi: 10.1103/PhysRevLett.131.073401.
Ultracold atoms in optical lattices form a competitive candidate for quantum computation owing to the excellent coherence properties, the highly parallel operations over spins, and the ultralow entropy achieved in qubit arrays. For this, a massive number of parallel entangled atom pairs have been realized in superlattices. However, the more formidable challenge is to scale up and detect multipartite entanglement, the basic resource for quantum computation, due to the lack of manipulations over local atomic spins in retroreflected bichromatic superlattices. In this Letter, we realize the functional building blocks in quantum-gate-based architecture by developing a cross-angle spin-dependent optical superlattice for implementing layers of quantum gates over moderately separated atoms incorporated with a quantum gas microscope for single-atom manipulation and detection. Bell states with a fidelity of 95.6(5)% and a lifetime of 2.20±0.13 s are prepared in parallel, and then connected to multipartite entangled states of one-dimensional ten-atom chains and two-dimensional plaquettes of 2×4 atoms. The multipartite entanglement is further verified with full bipartite nonseparability criteria. This offers a new platform toward scalable quantum computation and simulation.
由于具有出色的相干特性、对自旋的高度并行操作以及在量子比特阵列中实现的超低熵,光学晶格中的超冷原子成为量子计算的有力候选者。为此,在超晶格中已经实现了大量并行纠缠原子对。然而,由于在回射双色超晶格中缺乏对局部原子自旋的操控,扩大规模并检测多体纠缠(量子计算的基本资源)是一个更艰巨的挑战。在本信函中,我们通过开发一种交叉角自旋相关光学超晶格来实现基于量子门架构的功能构建块,该超晶格用于在适度分离的原子上实现量子门层,并结合了用于单原子操控和检测的量子气体显微镜。并行制备了保真度为95.6(5)%且寿命为2.20±0.13秒的贝尔态,然后将其连接到一维十原子链和二维2×4原子方格的多体纠缠态。通过完全二分不可分离性标准进一步验证了多体纠缠。这为可扩展的量子计算和模拟提供了一个新平台。