Weng Jushi, Chen Jun, Xu Yifei, Hu Xinru, Guo Chuangyun, Yang Yang, Sun Jingyi, Fu Lianshe, Wang Qing, Wei Jiamin, Yang Tinghai
School of Chemistry & Chemical Engineering, Jiangsu Laboratory of Precious Metals Processing Technology and Application, Jiangsu University of Technology, Changzhou 213001, PR China.
Department of Physics, Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
J Colloid Interface Sci. 2023 Dec 15;652(Pt B):1367-1380. doi: 10.1016/j.jcis.2023.08.169. Epub 2023 Aug 27.
Increasing the exposure of active sites and improving the intrinsic activity are necessary considerations for designing a highly efficient photocatalyst. Herein, an InS/AgI stable Z-scheme heterojunction with highly dispersed AgI nanoparticles (NPs) is synthesized by the mild self-templated and in-situ ion exchange strategy. Impressively, the optimized InS/AgI-300 Z-scheme heterojunction exhibits superior photodegradation activity (0.020 min) for the decomposition of insecticide imidacloprid (IMD), which is extremely higher than that of pure InS (0.002 min) and AgI (0.013 min). Importantly, the three-dimensional excitation-emission matrix (3D EEMs) fluorescence spectra, high-resolution mass spectrometry (HRMS), the photoelectrochemical tests, radical trapping experiment, and electron spin resonance (ESR) technique are performed to clarify the possible degradation pathway and mechanism of IMD by the InS/AgI-300 composite. The enhanced photocatalytic performance is attributed to the highly dispersed AgI NPs on hierarchical InS hollow nanotube and the construction of InS/AgI Z-scheme heterojunction, which can not only increase active site exposure, but also improve its intrinsic activity, facilitating rapid charge transfer rate and excellent electron-hole pairs separation efficiency. Meanwhile, the practical application potential of the InS/AgI-300 composite is systematically investigated. This study opens a new insight for designing catalysts with high photocatalytic performance through a convenient approach.
增加活性位点的暴露并提高本征活性是设计高效光催化剂时需要考虑的必要因素。在此,通过温和的自模板原位离子交换策略合成了具有高度分散的碘化银纳米颗粒(NPs)的硫化铟/碘化银稳定Z型异质结。令人印象深刻的是,优化后的硫化铟/碘化银-300 Z型异质结对杀虫剂吡虫啉(IMD)的分解表现出优异的光降解活性(0.020分钟),这远高于纯硫化铟(0.002分钟)和碘化银(0.013分钟)。重要的是,通过三维激发-发射矩阵(3D EEMs)荧光光谱、高分辨率质谱(HRMS)、光电化学测试、自由基捕获实验和电子自旋共振(ESR)技术来阐明硫化铟/碘化银-300复合材料对IMD可能的降解途径和机制。增强的光催化性能归因于分级硫化铟中空纳米管上高度分散的碘化银NPs以及硫化铟/碘化银Z型异质结的构建,这不仅可以增加活性位点的暴露,还可以提高其本征活性,促进快速的电荷转移速率和优异的电子-空穴对分离效率。同时,系统地研究了硫化铟/碘化银-300复合材料的实际应用潜力。本研究通过一种简便的方法为设计具有高光催化性能的催化剂开辟了新的思路。