Suppr超能文献

用于辐射冷却的可控形态聚合物共混光子超泡沫

Controllable-morphology polymer blend photonic metafoam for radiative cooling.

作者信息

Wang Yajie, Wang Tiecheng, Liang Jun, Wu Jiawei, Yang Maiping, Pan Yamin, Hou Chong, Liu Chuntai, Shen Changyu, Tao Guangming, Liu Xianhu

机构信息

College of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China.

Wuhan National Laboratory for Optoelectronics, School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China.

出版信息

Mater Horiz. 2023 Oct 30;10(11):5060-5070. doi: 10.1039/d3mh01008b.

Abstract

Incorporating radiative cooling photonic structures into the cooling systems of buildings presents a novel strategy to mitigate global warming and boost global carbon neutrality. Photonic structures with excellent solar reflection and thermal emission can be obtained by a rational combination of different materials. The current preparation strategies of radiative cooling materials are dominated by doping inorganic micro-nano particles into polymers, which usually possess insufficient solar reflectance. Here, a porous polymer metafoam was prepared with polycarbonate (PC) and polydimethylsiloxane (PDMS) using a simple thermally induced phase separation method. The metafoam exhibits strong solar reflectivity (97%), superior thermal emissivity (91%), and low thermal conductivity (46 mW m K) due to the controllable morphology of the randomly dispersed light-scattering air voids. Cooling tests demonstrate that the metafoam could reduce the average temperature by 5.2 °C and 10.2 °C during the daytime and nighttime, respectively. In addition, the simulation of a cooling energy system of buildings indicates that the metafoam can save 3.2-26.7 MJ m per year in different cities, which is an energy-saving percentage of 14.7-41%. The excellent comprehensive performances, including the passive cooling property, thermal insulation and self-cleaning of the metafoam makes it appropriate for practical outdoor applications, exhibiting its great potential as an energy-saving building cooling material.

摘要

将辐射冷却光子结构整合到建筑物的冷却系统中,是一种缓解全球变暖、推动全球碳中和的新策略。通过合理组合不同材料,可以获得具有优异太阳反射和热发射性能的光子结构。目前,辐射冷却材料的制备策略主要是将无机微纳米颗粒掺杂到聚合物中,而这些聚合物的太阳反射率通常不足。在此,采用简单的热致相分离法,用聚碳酸酯(PC)和聚二甲基硅氧烷(PDMS)制备了一种多孔聚合物超泡沫材料。由于随机分散的光散射气孔形态可控,该超泡沫材料具有很强的太阳反射率(97%)、优异的热发射率(91%)和低导热率(46 mW m⁻¹ K⁻¹)。冷却测试表明,该超泡沫材料在白天和夜间分别可将平均温度降低5.2℃和10.2℃。此外,对建筑物冷却能源系统的模拟表明,在不同城市,该超泡沫材料每年可节省3.2-26.7 MJ m⁻²的能源,节能百分比为14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验