Prieto-Ruiz Francisco, Gómez-Gil Elisa, Vicente-Soler Jero, Franco Alejandro, Soto Teresa, Madrid Marisa, Cansado José
Yeast Physiology Group, Department of Genetics and Microbiology, Campus de Excelencia Internacional de Ámbito Regional (CEIR) Campus Mare Nostrum, Universidad de Murcia, 30071 Murcia, Spain.
The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
iScience. 2023 Aug 12;26(9):107611. doi: 10.1016/j.isci.2023.107611. eCollection 2023 Sep 15.
Non-muscle myosin II activation by regulatory light chain (Rlc1) phosphorylation at Ser35 is crucial for cytokinesis during respiration in the fission yeast We show that in the early divergent and dimorphic fission yeast non-phosphorylated Rlc1 regulates the activity of Myo2 and Myp2 heavy chains during cytokinesis. Intriguingly, Rlc1-Myo2 nodes delay yeast to hyphae onset but are essential for mycelial development. Structure-function analysis revealed that phosphorylation-induced folding of Rlc1 α1 helix into an open conformation allows precise regulation of Myo2 during cytokinesis. Consistently, inclusion of bulky tryptophan residues in the adjacent α5 helix triggered Rlc1 shift and supported cytokinesis in absence of Ser35 phosphorylation. Remarkably, unphosphorylated Rlc1 lacking the α1 helix was competent to regulate cytokinesis during respiration. Hence, early diversification resulted in two efficient phosphorylation-independent and -dependent modes of Rlc1 regulation of myosin II activity in fission yeasts, the latter being conserved through evolution.
在裂殖酵母呼吸过程中,调节性轻链(Rlc1)在丝氨酸35位点的磷酸化激活非肌肉肌球蛋白II对胞质分裂至关重要。我们发现,在早期分化且具有二态性的裂殖酵母中,未磷酸化的Rlc1在胞质分裂过程中调节Myo2和Myp2重链的活性。有趣的是,Rlc1-Myo2节点会延迟酵母向菌丝形态的转变,但对菌丝体发育至关重要。结构-功能分析表明,磷酸化诱导Rlc1α1螺旋折叠成开放构象,从而在胞质分裂过程中精确调节Myo2。同样,在相邻的α5螺旋中引入大的色氨酸残基会引发Rlc1的转变,并在丝氨酸35未磷酸化的情况下支持胞质分裂。值得注意的是,缺乏α1螺旋的未磷酸化Rlc1在呼吸过程中仍能调节胞质分裂。因此,早期的分化导致了裂殖酵母中Rlc1调节肌球蛋白II活性的两种有效的磷酸化非依赖和依赖模式,后者在进化过程中得以保留。