Suppr超能文献

发展和验证近红外光谱程序,以预测乌干达木薯种质的木薯干物质和直链淀粉含量。

Development and validation of near-infrared spectroscopy procedures for prediction of cassava root dry matter and amylose contents in Ugandan cassava germplasm.

机构信息

National Crops Resources Research Institute, Kampala, Uganda.

Makerere University Kampala, Kampala, Uganda.

出版信息

J Sci Food Agric. 2024 Jun;104(8):4793-4800. doi: 10.1002/jsfa.12966. Epub 2023 Nov 23.

Abstract

BACKGROUND

Cassava utilization for food and/or industrial products depends on inherent properties of root dry matter content (DMC) and the starch fraction of amylose content (AC). Accordingly, in the present study, near-infrared reflectance spectroscopy (NIRS) models were developed to aid breeding and selection of DMC and AC as critical industrial traits taking care of root sample preparation and cassava germplasm diversity available in Uganda.

RESULTS

Upon undertaking calibrations and cross-validations, best models were adopted for validation. DMC in calibration samples ranged from 20 to 45 g 100g, whereas, for amylose content, it ranged from 14 to 33 g 100g. In the validation set, average DMC was 29.5 g 100g, whereas, for amylose content, it was 24.64 g 100g. For DMC, a modified partial least square regression model had regression coefficients (R) of 0.98 and 0.96, respectively, in the calibration and validation set. These were also associated with low bias (-0.018) and ratio of performance deviation that ranged from 4.7 to 5.0. In addition, standard error of prediction values ranged from 0.9 g 100g to 1.06 g 100g. For AC, the regression coefficient was 0.91 for the calibration set and 0.94 for the validation set. A bias equivalent to -0.03 and a ratio of performance deviation of 4.23 were observed.

CONCLUSION

These findings confirm the robustness of NIRS in the estimation of dry matter content and amylose content in cassava roots and thus justify its use in routine cassava breeding operations. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

摘要

背景

木薯的食用和/或工业用途取决于根干物质含量(DMC)和直链淀粉含量(AC)的淀粉部分固有特性。因此,在本研究中,近红外反射光谱(NIRS)模型被开发出来,以帮助培育和选择 DMC 和 AC,将其作为关键的工业特性,同时考虑到乌干达可用的根样本制备和木薯种质多样性。

结果

在进行校准和交叉验证后,采用最佳模型进行验证。校准样品中的 DMC 范围为 20 至 45 g/100g,而直链淀粉含量范围为 14 至 33 g/100g。在验证集中,平均 DMC 为 29.5 g/100g,而直链淀粉含量为 24.64 g/100g。对于 DMC,修正的偏最小二乘回归模型在校准和验证集中的回归系数(R)分别为 0.98 和 0.96。这两个模型也与低偏差(-0.018)和性能偏差比相关,其范围为 4.7 至 5.0。此外,预测值的标准误差范围为 0.9 g/100g 至 1.06 g/100g。对于 AC,校准集的回归系数为 0.91,验证集的回归系数为 0.94。观察到的偏差相当于-0.03,性能偏差比为 4.23。

结论

这些发现证实了 NIRS 在木薯根干物质含量和直链淀粉含量估计中的稳健性,因此证明了其在常规木薯培育操作中的使用是合理的。© 2023 作者。《食品科学杂志》由 John Wiley & Sons Ltd 代表化学工业协会出版。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验