Suppr超能文献

[基于脑电信号的注意力水平评估研究进展]

[Research progress on attention level evaluation based on electroencephalogram signals].

作者信息

Yang Wenyang, Zhang Wenxuan

机构信息

College of Computer, Xi'an Shiyou University, Xi'an 710065, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Aug 25;40(4):820-828. doi: 10.7507/1001-5515.202208085.

Abstract

Attention level evaluation refers to the evaluation of people's attention level through observation or experimental testing, and its research results have great application value in education and teaching, intelligent driving, medical health and other fields. With its objective reliability and security, electroencephalogram signals have become one of the most important technical means to analyze and express attention level. At present, there is little review literature that comprehensively summarize the application of electroencephalogram signals in the field of attention evaluation. To this end, this paper first summarizes the research progress on attention evaluation; then the important methods for electroencephalogram attention evaluation are analyzed, including data preprocessing, feature extraction and selection, attention evaluation methods, etc.; finally, the shortcomings of the current development in the field of electroencephalogram attention evaluation are discussed, and the future development trend is prospected, to provide research references for researchers in related fields.

摘要

注意力水平评估是指通过观察或实验测试对人的注意力水平进行评估,其研究成果在教育教学、智能驾驶、医疗卫生等领域具有重要的应用价值。脑电图信号因其客观可靠性和安全性,已成为分析和表达注意力水平的最重要技术手段之一。目前,全面总结脑电图信号在注意力评估领域应用的综述文献较少。为此,本文首先综述了注意力评估的研究进展;然后分析了脑电图注意力评估的重要方法,包括数据预处理、特征提取与选择、注意力评估方法等;最后讨论了脑电图注意力评估领域当前发展的不足,并对未来发展趋势进行了展望,为相关领域的研究人员提供研究参考。

相似文献

1
[Research progress on attention level evaluation based on electroencephalogram signals].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Aug 25;40(4):820-828. doi: 10.7507/1001-5515.202208085.
2
[Review on identity feature extraction methods based on electroencephalogram signals].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Dec 25;38(6):1203-1210. doi: 10.7507/1001-5515.202102057.
3
T-A-MFFNet: Multi-feature fusion network for EEG analysis and driving fatigue detection based on time domain network and attention network.
Comput Biol Chem. 2023 Jun;104:107863. doi: 10.1016/j.compbiolchem.2023.107863. Epub 2023 Apr 3.
4
[Advances in methods and applications of electroencephalogram microstate analysis].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Feb 25;40(1):163-170. doi: 10.7507/1001-5515.202206007.
5
[Research Progress of Automatic Sleep Staging Based on Electroencephalogram Signals].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2015 Oct;32(5):1155-9.
6
Sleep staging algorithm based on multichannel data adding and multifeature screening.
Comput Methods Programs Biomed. 2020 Apr;187:105253. doi: 10.1016/j.cmpb.2019.105253. Epub 2019 Nov 30.
8
Survey on the research direction of EEG-based signal processing.
Front Neurosci. 2023 Jul 13;17:1203059. doi: 10.3389/fnins.2023.1203059. eCollection 2023.
9
Transductive domain adaptive learning for epileptic electroencephalogram recognition.
Artif Intell Med. 2014 Nov;62(3):165-77. doi: 10.1016/j.artmed.2014.10.002. Epub 2014 Oct 17.
10
[Research progress on emotion recognition based on physiological signals].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2015 Feb;32(1):229-34.

本文引用的文献

1
The EEG-Based Attention Analysis in Multimedia m-Learning.
Comput Math Methods Med. 2020 Jun 10;2020:4837291. doi: 10.1155/2020/4837291. eCollection 2020.
3
Resting state EEG power research in Attention-Deficit/Hyperactivity Disorder: A review update.
Clin Neurophysiol. 2020 Jul;131(7):1463-1479. doi: 10.1016/j.clinph.2020.03.029. Epub 2020 Apr 13.
5
Frontal EEG theta/beta ratio during mind wandering episodes.
Biol Psychol. 2019 Jan;140:19-27. doi: 10.1016/j.biopsycho.2018.11.003. Epub 2018 Nov 17.
6
Recognizing the degree of human attention using EEG signals from mobile sensors.
Sensors (Basel). 2013 Aug 9;13(8):10273-86. doi: 10.3390/s130810273.
7
Approximate entropy as a measure of system complexity.
Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2297-301. doi: 10.1073/pnas.88.6.2297.
8
Physiological time-series analysis using approximate entropy and sample entropy.
Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49. doi: 10.1152/ajpheart.2000.278.6.H2039.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验