Breen Lorin I, Loveless Amanda M, Darr Adam M, Cartwright Keith L, Garner Allen L
School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Sci Rep. 2023 Sep 4;13(1):14505. doi: 10.1038/s41598-023-41615-2.
Multiple electron emission mechanisms often contribute in electron devices, motivating theoretical studies characterizing the transitions between them. Previous studies unified thermionic and field emission, defined by the Richardson-Laue-Dushman (RLD) and Fowler-Nordheim (FN) equations, respectively, with the Child-Langmuir (CL) law for vacuum space-charge limited current (SCLC); another study unified FN and CL with the Mott-Gurney (MG) law for collisional SCLC. However, thermionic emission, which introduces a nonzero injection velocity, may also occur in gas, motivating this analysis to unify RLD, FN, CL, and MG. We exactly calculate the current density as a function of applied voltage over a range of injection velocity (i.e., temperature), mobility, and gap distance. This exact solution approaches RLD, FN, and generalized CL (GCL) and MG (GMG) for nonzero injection velocity under appropriate limits. For nonzero initial velocity, GMG approaches zero for sufficiently small applied voltage and mobility, making these gaps always space-charge limited by either GMG at low voltage or GCL at high voltage. The third-order nexus between FN, GMG, and GCL changes negligibly from the zero initial velocity calculation over ten orders of magnitude of applied voltage. These results provide a closed form solution for GMG and guidance on thermionic emission in a collisional gap.
多种电子发射机制常常在电子器件中发挥作用,这促使人们开展理论研究来描述它们之间的转变。先前的研究分别将由理查森 - 劳厄 - 杜什曼(RLD)方程和福勒 - 诺德海姆(FN)方程定义的热电子发射和场发射,与用于真空空间电荷限制电流(SCLC)的 Child - Langmuir(CL)定律统一起来;另一项研究则将 FN 和 CL 与用于碰撞 SCLC 的莫特 - 格尼(MG)定律统一起来。然而,引入非零注入速度的热电子发射也可能发生在气体中,这促使本分析将 RLD、FN、CL 和 MG 统一起来。我们精确计算了在一系列注入速度(即温度)、迁移率和间隙距离下,电流密度作为施加电压的函数。在适当的极限条件下,对于非零注入速度,这个精确解趋近于 RLD、FN 以及广义 CL(GCL)和 MG(GMG)。对于非零初始速度,当施加电压和迁移率足够小时,GMG 趋近于零,使得这些间隙在低电压下总是由 GMG 限制空间电荷,在高电压下由 GCL 限制空间电荷。在十个数量级的施加电压范围内,FN、GMG 和 GCL 之间的三阶关系与零初始速度计算结果相比变化可忽略不计。这些结果为 GMG 提供了一个封闭形式的解,并为碰撞间隙中的热电子发射提供了指导。