Suppr超能文献

在水库调节的流域中利用入流和灌溉需求预测进行实时水库调度

Real-time reservoir operation using inflow and irrigation demand forecasts in a reservoir-regulated river basin.

作者信息

Sushanth Kallem, Mishra Ashok, Singh Rajendra

机构信息

Department of Agricultural and Food Engineering, IIT Kharagpur, Kharagpur 721302, West Bengal, India.

Department of Agricultural and Food Engineering, IIT Kharagpur, Kharagpur 721302, West Bengal, India.

出版信息

Sci Total Environ. 2023 Dec 15;904:166806. doi: 10.1016/j.scitotenv.2023.166806. Epub 2023 Sep 8.

Abstract

Real-time reservoir operation using inflow and irrigation demand forecasts can help reservoir system managers make effective water management decisions. Forecasting of inflow and irrigation demands is challenging, owing to the variability of the weather variables that affect inflows and irrigation demands. In this context, bias-corrected Global Forecasting System (GFS) forecasts are used here in a hybrid approach (reservoir module with Long Short Term Memory (LSTM)) to forecast the reservoir inflows. Concurrently, the bias-corrected GFS forecasts are used in irrigation demand module to forecast the irrigation demands. The 'Scaled Distribution Mapping' method is used to bias-correct the GFS data of 1-5 days lead. The study area is the Damodar river basin, India, consisting of five major reservoirs: Tenughat and Konar located upstream of Panchet, and Tilaya situated upstream of Maithon. With the upstream reservoir outflow forecasts, the inflows are forecasted in Panchet and Maithon reservoirs with NSE values of 0.88-0.96 and 0.78-0.88, respectively, up to a 5-day lead. The irrigation demand module with bias-corrected GFS forecasts forecasted the irrigation demands close to the irrigation demands with the observed weather data. The percentage errors in irrigation demand forecasts of the Kharif (June-October) season at 1-5 days lead are 9.45 %, -15.45 %, -20.52 %, -26.36 %, -27.31 %, respectively. On the contrary, percentage errors in irrigation demand forecasts of Rabi (November-February) and Boro (January-May) are in the range of 8.17-8.79 % and 3.48-8.06 %, respectively. With the inflows and irrigation demand forecasts, the Panchet and Maithon reservoirs satisfied the downstream demands and reduced the floods. The inflow and irrigation demand forecasts, based on the GFS forecasts, have substantial potential for real-time reservoir operation, leading to efficient water management downstream.

摘要

利用入流和灌溉需求预测进行实时水库调度,有助于水库系统管理者做出有效的水资源管理决策。由于影响入流和灌溉需求的天气变量具有多变性,因此对入流和灌溉需求进行预测具有挑战性。在此背景下,本文采用一种混合方法(结合长短期记忆网络(LSTM)的水库模块),使用经偏差校正的全球预报系统(GFS)预报来预测水库入流。同时,将经偏差校正的GFS预报用于灌溉需求模块,以预测灌溉需求。采用“缩放分布映射”方法对提前1 - 5天的GFS数据进行偏差校正。研究区域为印度的达莫德尔河流域,该流域由五个主要水库组成:位于潘切特上游的特努加特和科纳尔,以及位于迈索尔上游的蒂拉亚。通过上游水库出流预报,可对潘切特水库和迈索尔水库的入流进行预测,提前5天的NSE值分别为0.88 - 0.96和0.78 - 0.88。经偏差校正的GFS预报的灌溉需求模块所预测的灌溉需求与观测到的天气数据下的灌溉需求接近。在1 - 5天提前期内,季风季节(6月至10月)灌溉需求预测的百分比误差分别为9.45%、-15.45%、-20.52%、-26.36%、-27.31%。相反,冬季作物季(11月至2月)和夏播作物季(1月至5月)灌溉需求预测的百分比误差分别在8.17 - 8.79%和3.48 - 8.06%范围内。通过入流和灌溉需求预测,潘切特水库和迈索尔水库满足了下游需求并减轻了洪水灾害。基于GFS预报的入流和灌溉需求预测在实时水库调度方面具有巨大潜力,可实现下游水资源的高效管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验