Suppr超能文献

基于图像处理算法的面部软组织角度测量分析。

Angular Photogrammetric Analysis of Facial Soft Tissue by Image Processing Algorithms.

机构信息

Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran.

Otorhinolaryngology Research Center, Otorhinolaryngology Head and Neck Surgery Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Aesthetic Plast Surg. 2024 Apr;48(7):1426-1435. doi: 10.1007/s00266-023-03643-1. Epub 2023 Sep 8.

Abstract

BACKGROUND

The main aim of this study was to present an automatic method based on image processing algorithms for facial anatomical landmark localization and angular photogrammetric analysis applicable for rhinoplasty surgery. We studied and measured color profile photographs of 100 patients before and after rhinoplasty surgery.

METHODS

In facial anthropometry analysis, anatomical landmarks are often defined by specialists, manually. This process is time-consuming and requires training and skill. The Cascade Regression Method (CRM) was utilized for facial landmark detection to overcome the mentioned problem. In this study, 11 anatomical landmarks were used to measure 9 facial angular metrics. Finally, a t-test (with the significance level set at a p-value of 0.05) was applied to analyze before surgery versus after surgery comparisons.

RESULTS

Experimental results dedicated that there is a significance difference (p < 0.001) in nasofrontal, nasolabial, mentolabial, nasomental, facial convexity including nose, facial convexity excluding nose, projection of the upper lip to chin, and H angles before and after surgery. Also, results showed that there is not a significance difference in nose tip angle.

CONCLUSION

We believe that the presented system can aim to reduce the personal errors made by manual measurement and to facilitate facial anthropometry analysis before and after surgery with high accuracy. Also, the normative data for Iranian women can be used as a guide for the diagnosis and planning of oral and maxillofacial, ENT, and plastic surgeries.

LEVEL OF EVIDENCE II

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

摘要

背景

本研究的主要目的是提出一种基于图像处理算法的自动方法,用于面部解剖标志定位和角摄影分析,适用于鼻整形手术。我们研究并测量了 100 例鼻整形手术前后的彩色轮廓照片。

方法

在面部人体测量分析中,解剖标志通常由专家手动定义。这个过程耗时且需要培训和技能。我们利用级联回归方法(CRM)进行面部地标检测,以解决上述问题。在这项研究中,使用了 11 个解剖标志来测量 9 个面部角度度量。最后,应用 t 检验(显著水平设置为 p 值为 0.05)分析手术前后的比较。

结果

实验结果表明,鼻额、鼻唇、颏唇、鼻颏、包括鼻子的面部凸度、不包括鼻子的面部凸度、上唇到下巴的突出度和 H 角在手术前后有显著差异(p<0.001)。此外,结果还表明鼻尖角没有显著差异。

结论

我们相信,所提出的系统可以减少手动测量的人为误差,并以高精度促进手术前后的面部人体测量分析。此外,伊朗女性的正常数据可作为口腔颌面外科、耳鼻喉科和整形外科的诊断和规划指南。

证据水平 II:本刊要求作者为每篇文章分配一个证据水平。有关这些循证医学评级的完整描述,请参阅目录或在线作者指南 www.springer.com/00266

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验