Mustapa Nur Bahijah, Ahmad Romisuhani, Al Bakri Abdullah Mohd Mustafa, Ibrahim Wan Mastura Wan, Sandu Andrei Victor, Nemes Ovidiu, Vizureanu Petrica, Kartikowati Christina W, Risdanareni Puput
Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia.
Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia.
Materials (Basel). 2023 Aug 26;16(17):5853. doi: 10.3390/ma16175853.
This research aims to study the effects of the sintering mechanism on the crystallization kinetics when the geopolymer is sintered at different temperatures: 200 °C, 400 °C, 600 °C, 800 °C, 1000 °C, and 1200 °C for a 3 h soaking time with a heating rate of 5 °C/min. The geopolymer is made up of kaolin and sodium silicate as the precursor and an alkali activator, respectively. Characterization of the nepheline produced was carried out using XRF to observe the chemical composition of the geopolymer ceramics. The microstructures and the phase characterization were determined by using SEM and XRD, respectively. The SEM micrograph showed the microstructural development of the geopolymer ceramics as well as identifying reacted/unreacted regions, porosity, and cracks. The maximum flexural strength of 78.92 MPa was achieved by geopolymer sintered at 1200 °C while the minimum was at 200 °C; 7.18 MPa. The result indicates that the flexural strength increased alongside the increment in the sintering temperature of the geopolymer ceramics. This result is supported by the data from the SEM micrograph, where at the temperature of 1000 °C, the matrix structure of geopolymer-based ceramics starts to become dense with the appearance of pores.
本研究旨在探讨当地质聚合物在不同温度(200℃、400℃、600℃、800℃、1000℃和1200℃)下烧结3小时,升温速率为5℃/分钟时,烧结机制对结晶动力学的影响。该地质聚合物分别由高岭土和硅酸钠作为前驱体和碱激发剂制成。使用X射线荧光光谱仪(XRF)对所制备的霞石进行表征,以观察地质聚合物陶瓷的化学成分。分别使用扫描电子显微镜(SEM)和X射线衍射仪(XRD)来测定微观结构和相表征。SEM显微照片显示了地质聚合物陶瓷的微观结构发展情况,并识别出反应/未反应区域、孔隙率和裂纹。在1200℃烧结的地质聚合物获得了78.92MPa的最大抗弯强度,而在200℃时最小,为7.18MPa。结果表明,地质聚合物陶瓷的抗弯强度随着烧结温度的升高而增加。SEM显微照片的数据支持了这一结果,在1000℃时,地质聚合物基陶瓷的基体结构开始变得致密,出现了孔隙。