Suppr超能文献

Effects of V-N Microalloying on Low-Cycle Fatigue Property in the Welded Joints of Constructional Steel.

作者信息

Cui Kaiyu, Yang Haifeng, Li Zhengrong, Wang Guodong, Zhao Hongyun, Li Yuxuan

机构信息

State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.

State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Pangang Group, Panzhihua 617000, China.

出版信息

Materials (Basel). 2023 Aug 27;16(17):5860. doi: 10.3390/ma16175860.

Abstract

Low-cycle fatigue testing was carried out for the welded joints of constructional steels containing 0% V + 0.0021% N and 0.10% V + 0.0078% N, and the effects of V-N microalloying on the low-cycle fatigue property of the welded joints were investigated. The results showed that when the total strain amplitudes were 1.2%, 1.4% and 1.6%, the mean low-cycle fatigue lives of the welded joints of steel containing 0.10% V + 0.0078% N were 5050, 2372 and 1535 cycles, respectively, which were significantly higher than those of the welded joints of steel containing 0% V + 0.0021% N; however, when the total strain amplitudes increased to 1.8% and 2.0%, the mean low-cycle fatigue lives of the welded joints of steel containing 0.10% V + 0.0078% N were 575 and 367 cycles, respectively, which were gradually lower than those of the welded joints of steel containing 0% V + 0.0021% N. The reasons causing the difference of low-cycle fatigue life were explained by the dislocation structure and precipitates in the welding heat-affected zone, plastic strain energy density of the welded joints, and fatigue fracture morphology. When the low-cycle fatigue life is between 100 and 200 cycles, the cyclic toughness of the welded joint of steel containing 0.10% V + 0.0078% N is between 57.48 and 78.22 J/cm, which is higher than that of the welded joint of steel containing 0% V + 0.0021% N, indicating that the welded joint of steel containing 0.10% V + 0.0078% N is able to absorb more energy in a seismic condition, therefore possessing better seismic resistance.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/facf/10488504/bd3473bc5ba3/materials-16-05860-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验