Suppr超能文献

用于钛合金粉末生产的EIGA雾化器中一次破碎的计算流体动力学建模。

CFD Modeling of Primary Breakup in an EIGA Atomizer for Titanium Alloy Powder Production.

作者信息

Guo Kuaikuai, Liu Changsheng, Chen Wei, Luo Chang, Li Jianzhong

机构信息

School of Metallurgy, Northeastern University, Shenyang 110819, China.

School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.

出版信息

Materials (Basel). 2023 Aug 29;16(17):5900. doi: 10.3390/ma16175900.

Abstract

Electrode induction melting gas atomization (EIGA) technology is a commonly used and effective method for producing spherical metal powders in additive manufacturing. In this paper, we aim to describe the atomization and fragmentation of liquid sheets from a typical swirl nozzle and highlight the primary breakup of titanium alloy powder production. We developed a computational fluid dynamics (CFD) approach to simulate the primary disintegration process of the molten metal using the volume of fluid (VOF) method coupled with the large eddy simulation turbulence model (LES). Our numerical results show that high-speed spraying creates supersonic airflow in the atomization chamber. Recirculation is the main area where primary atomization occurs. The formation of the recirculation zone is the direct driving force that allows atomization to proceed, which will increase turbulence intensity and achieve higher atomization efficiency. VOF-LES simulation can capture some qualitative results such as conical melt-sheet shape, wave formation, ligament formation, and perforation formation. The primary droplet size mainly ranges between 200 and 800 μm. Finally, with increasing gas pressure, the particle size of the atomized powder gradually decreases, and the particle size distribution becomes narrower.

摘要

电极感应熔炼气体雾化(EIGA)技术是增材制造中生产球形金属粉末常用且有效的方法。本文旨在描述典型旋流喷嘴液膜的雾化和破碎,并着重介绍钛合金粉末生产的初次破碎过程。我们开发了一种计算流体动力学(CFD)方法,使用流体体积(VOF)法结合大涡模拟湍流模型(LES)来模拟熔融金属的初次破碎过程。我们的数值结果表明,高速喷射在雾化室内产生超音速气流。回流区域是初次雾化发生的主要区域。回流区的形成是使雾化得以进行的直接驱动力,这会增加湍流强度并实现更高的雾化效率。VOF-LES模拟可以捕捉到一些定性结果,如锥形熔体液膜形状、波的形成、细丝形成和穿孔形成。初次液滴尺寸主要在200至800μm之间。最后,随着气体压力的增加,雾化粉末的粒径逐渐减小,粒径分布变窄。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a42d/10489089/86a7c1054a73/materials-16-05900-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验