Suppr超能文献

基于还原氧化石墨烯薄膜的可穿戴温度传感器。

Wearable Temperature Sensors Based on Reduced Graphene Oxide Films.

作者信息

Li Xinyue, Cui Tianrui, Li Xin, Liu Houfang, Li Ding, Jian Jinming, Li Zhen, Yang Yi, Ren Tianling

机构信息

School of Integrated Circuit, Tsinghua University, Beijing 100084, China.

Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.

出版信息

Materials (Basel). 2023 Aug 30;16(17):5952. doi: 10.3390/ma16175952.

Abstract

With the development of medical technology and increasing demands of healthcare monitoring, wearable temperature sensors have gained widespread attention because of their portability, flexibility, and capability of conducting real-time and continuous signal detection. To achieve excellent thermal sensitivity, high linearity, and a fast response time, the materials of sensors should be chosen carefully. Thus, reduced graphene oxide (rGO) has become one of the most popular materials for temperature sensors due to its exceptional thermal conductivity and sensitive resistance changes in response to different temperatures. Moreover, by using the corresponding preparation methods, rGO can be easily combined with various substrates, which has led to it being extensively applied in the wearable field. This paper reviews the state-of-the-art advances in wearable temperature sensors based on rGO films and summarizes their sensing mechanisms, structure designs, functional material additions, manufacturing processes, and performances. Finally, the possible challenges and prospects of rGO-based wearable temperature sensors are briefly discussed.

摘要

随着医学技术的发展以及医疗监测需求的不断增加,可穿戴式温度传感器因其便携性、灵活性以及能够进行实时连续信号检测的能力而受到广泛关注。为了实现优异的热灵敏度、高线性度和快速响应时间,传感器材料的选择应谨慎。因此,还原氧化石墨烯(rGO)由于其卓越的热导率以及对不同温度响应时敏感的电阻变化,已成为温度传感器最受欢迎的材料之一。此外,通过使用相应的制备方法,rGO可以很容易地与各种基底结合,这使得它在可穿戴领域得到了广泛应用。本文综述了基于rGO薄膜的可穿戴温度传感器的最新进展,并总结了它们的传感机制、结构设计、功能材料添加、制造工艺和性能。最后,简要讨论了基于rGO的可穿戴温度传感器可能面临的挑战和前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c81b/10488796/a9e2176239b6/materials-16-05952-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验