Suppr超能文献

用于拟除虫菊酯类农药定性和定量分析的机器学习辅助荧光传感器阵列

Machine learning-assisted fluorescence sensor array for qualitative and quantitative analysis of pyrethroid pesticides.

作者信息

Li Min, Pan Qiuli, Wang Jun, Wang Zhouping, Peng Chifang

机构信息

State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.

Shandong Institute for Food and Drug Control, Xinluo Road 2749, Jinan, Shandong 250101, PR China.

出版信息

Food Chem. 2024 Feb 1;433:137368. doi: 10.1016/j.foodchem.2023.137368. Epub 2023 Sep 3.

Abstract

The simultaneous detection of multiple residues of pyrethroid pesticides (PPs) on vegetables and fruits is still challenging using traditional nanosensing methods due to the high structural similarity of PPs. In this work, sensor arrays composed of three nanocomposite complexes (rhodamine B-CD@Au, rhodamine 6G-CD@Au, and coumarin 6-CD@Au) were constructed to discriminate between structurally similar PPs. Four PPs, deltamethrin, fenvalerate, cyfluthrin, and fenpropathrin, were successfully discriminated. The ability of these sensor units was derived from the different affinity between receptor/analyte and receptor/dye, as well as the non-linear relationship between fluorescence signal and analyte concentration. Upon multivariate pattern recognition analysis, the array performed high-throughput identification of four PPs in unknown samples with 100% classification accuracy. In addition, good accuracy of predicting concentration using the "stepwise prediction" strategy combined with the machine learning method was achieved.

摘要

由于拟除虫菊酯类农药(PPs)结构高度相似,使用传统纳米传感方法同时检测蔬菜和水果上多种PPs残留仍然具有挑战性。在这项工作中,构建了由三种纳米复合复合物(罗丹明B - CD@Au、罗丹明6G - CD@Au和香豆素6 - CD@Au)组成的传感器阵列,以区分结构相似的PPs。成功区分了四种PPs,即溴氰菊酯、氰戊菊酯、氟氯氰菊酯和甲氰菊酯。这些传感器单元的能力源于受体/分析物与受体/染料之间不同的亲和力,以及荧光信号与分析物浓度之间的非线性关系。经过多变量模式识别分析,该阵列对未知样品中的四种PPs进行了高通量识别,分类准确率达100%。此外,结合机器学习方法,采用“逐步预测”策略实现了良好的浓度预测准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验