Falzone Maria E, MacKinnon Roderick
bioRxiv. 2023 Aug 30:2023.08.29.555394. doi: 10.1101/2023.08.29.555394.
enzymes cleave producing IP3 and DAG. modulates the function of many ion channels, while IP3 and DAG regulate intracellular Ca levels and protein phosphorylation by protein kinase C, respectively. enzymes are under the control of GPCR signaling through direct interactions with G proteins and and have been shown to be coincidence detectors for dual stimulation of and G coupled receptors. are aqueous-soluble cytoplasmic enzymes, but partition onto the membrane surface to access their lipid substrate, complicating their functional and structural characterization. Using newly developed methods, we recently showed that activates by recruiting it to the membrane. Using these same methods, here we show that increases the catalytic rate constant, , of . Since stimulation of by depends on an autoinhibitory element (the X-Y linker), we propose that produces partial relief of the X-Y linker autoinhibition through an allosteric mechanism. We also determined membrane-bound structures of the and complexes, which show that these G proteins can bind simultaneously and independently of each other to regulate activity. The structures rationalize a finding in the enzyme assay, that co-stimulation by both G proteins follows a product rule of each independent stimulus. We conclude that baseline activity of is strongly suppressed, but the effect of G proteins, especially acting together, provides a robust stimulus upon G protein stimulation.
For certain cellular signaling processes, the background activity of signaling enzymes must be minimal and stimulus-dependent activation robust. Nowhere is this truer than in signaling by , whose activity regulates intracellular Ca , phosphorylation by Protein Kinase C, and the activity of numerous ion channels and membrane receptors. In this study we show how enzymes are regulated by two kinds of G proteins, and . Enzyme activity studies and structures on membranes show how these G proteins act by separate, independent mechanisms, leading to a product rule of co-stimulation when they act together. The findings explain how cells achieve robust stimulation of in the setting of very low background activity, properties essential to cell health and survival.
酶裂解产生肌醇三磷酸(IP3)和二酰基甘油(DAG)。[该物质]调节许多离子通道的功能,而IP3和DAG分别调节细胞内钙水平和蛋白激酶C介导的蛋白磷酸化。酶受G蛋白偶联受体(GPCR)信号传导的控制,通过与G蛋白[具体名称1]和[具体名称2]直接相互作用,并且已被证明是[具体名称1]和G[具体名称2]偶联受体双重刺激的巧合探测器。[这些酶]是水溶性胞质酶,但会分布到膜表面以接触其脂质底物,这使其功能和结构表征变得复杂。使用新开发的方法,我们最近表明[具体物质1]通过将[具体物质2]募集到膜上来激活它。使用相同的方法,我们在此表明[具体物质3]增加了[具体物质2]的催化速率常数,即[具体符号]。由于[具体物质3]对[具体物质2]的刺激依赖于一种自抑制元件(X - Y连接子),我们提出[具体物质3]通过变构机制部分缓解了X - Y连接子的自抑制。我们还确定了[具体物质2]和[具体物质3]复合物的膜结合结构,这表明这些G蛋白可以同时且相互独立地结合以调节[具体物质2]的活性。这些结构解释了酶活性测定中的一个发现,即两种G蛋白共同刺激遵循每个独立刺激的乘积规则。我们得出结论,[具体物质2]的基础活性受到强烈抑制,但G蛋白的作用,特别是共同作用时,在G蛋白刺激时提供了强大的刺激。
对于某些细胞信号传导过程,信号酶的背景活性必须最小化,而刺激依赖性激活必须强大。在[具体物质2]信号传导中尤其如此,其活性调节细胞内钙、蛋白激酶C介导的磷酸化以及众多离子通道和膜受体的活性。在这项研究中,我们展示了[具体物质2]酶如何受到两种G蛋白,即[具体名称1]和[具体名称2]的调节。酶活性研究和膜上结构表明这些G蛋白通过独立的机制起作用,当它们共同作用时导致共同刺激的乘积规则。这些发现解释了细胞如何在极低的背景活性情况下实现对[具体物质2]的强大刺激,这些特性对于细胞健康和存活至关重要。