Li Jiachen, Yu Jincheng, Chen Zehua, Yang Weitao
Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.
J Phys Chem A. 2023 Sep 21;127(37):7811-7822. doi: 10.1021/acs.jpca.3c02834. Epub 2023 Sep 11.
We developed an efficient active-space particle-particle random-phase approximation (ppRPA) approach to calculate accurate charge-neutral excitation energies of molecular systems. The active-space ppRPA approach constrains both indexes in particle and hole pairs in the ppRPA matrix, which only selects frontier orbitals with dominant contributions to low-lying excitation energies. It employs the truncation in both orbital indexes in the particle-particle and the hole-hole spaces. The resulting matrix, whose eigenvalues are excitation energies, has a dimension that is independent of the size of the systems. The computational effort for the excitation energy calculation, therefore, scales linearly with system size and is negligible compared with the ground-state calculation of the ( - 2)-electron system, where is the electron number of the molecule. With the active space consisting of 30 occupied and 30 virtual orbitals, the active-space ppRPA approach predicts the excitation energies of valence, charge-transfer, Rydberg, double, and diradical excitations with the mean absolute errors (MAEs) smaller than 0.03 eV compared with the full-space ppRPA results. As a side product, we also applied the active-space ppRPA approach in the renormalized singles (RS) T-matrix approach. Combining the non-interacting pair approximation that approximates the contribution to the self-energy outside the active space, the active-space @PBE approach predicts accurate absolute and relative core-level binding energies with the MAEs around 1.58 and 0.3 eV, respectively. The developed linear scaling calculation of excitation energies is promising for applications to large and complex systems.
我们开发了一种高效的活性空间粒子 - 粒子随机相位近似(ppRPA)方法,用于计算分子体系精确的电荷中性激发能。活性空间ppRPA方法在ppRPA矩阵中约束粒子和空穴对的索引,该矩阵仅选择对低激发能有主要贡献的前沿轨道。它在粒子 - 粒子和空穴 - 空穴空间的轨道索引中都采用截断。其特征值为激发能的所得矩阵,其维度与体系大小无关。因此,激发能计算的计算量随体系大小呈线性缩放,与( - 2)电子体系的基态计算相比可忽略不计,其中 是分子的电子数。对于由30个占据轨道和30个虚拟轨道组成的活性空间,与全空间ppRPA结果相比,活性空间ppRPA方法预测价态、电荷转移、里德堡、双激发和双自由基激发的激发能,平均绝对误差(MAE)小于0.03 eV。作为副产品,我们还将活性空间ppRPA方法应用于重整化单激发(RS)T矩阵方法。结合近似活性空间外自能贡献的非相互作用对近似,活性空间@PBE方法预测精确的绝对和相对芯能级结合能,平均绝对误差分别约为1.58和0.3 eV。所开发的激发能线性缩放计算对于应用于大型复杂体系很有前景。