Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
Sci Rep. 2023 Sep 11;13(1):14988. doi: 10.1038/s41598-023-41367-z.
Synthetic biology involves the engineering of logic circuit gates that process different inputs to produce specific outputs, enabling the creation or control of biological functions. While CRISPR has become the tool of choice in molecular biology due to its RNA-guided targetability to other nucleic acids, it has not been frequently applied to logic gates beyond those controlling the guide RNA (gRNA). In this study, we present an adaptation of split Cas9 to generate logic gates capable of sensing biological events, leveraging a Cas9 reporter (EGxxFP) to detect occurrences such as cancer cell origin, epithelial to mesenchymal transition (EMT), and cell-cell fusion. First, we positioned the complementing halves of split Cas9 under different promoters-one specific to cancer cells of epithelial origin (hCEA) and the other a universal promoter. The use of self-assembling inteins facilitated the reconstitution of the Cas9 halves. Consequently, only cancer cells with an epithelial origin activated the reporter, exhibiting green fluorescence. Subsequently, we explored whether this system could detect biological processes such as epithelial to mesenchymal transition (EMT). To achieve this, we designed a logic gate where one half of Cas9 is expressed under the hCEA, while the other is activated by TWIST1. The results showed that cells undergoing EMT effectively activated the reporter. Next, we combined the two inputs (epithelial origin and EMT) to create a new logic gate, where only cancer epithelial cells undergoing EMT activated the reporter. Lastly, we applied the split-Cas9 logic gate as a sensor of cell-cell fusion, both in induced and naturally occurring scenarios. Each cell type expressed one half of split Cas9, and the induction of fusion resulted in the appearance of multinucleated syncytia and the fluorescent reporter. The simplicity of the split Cas9 system presented here allows for its integration into various cellular processes, not only as a sensor but also as an actuator.
合成生物学涉及工程逻辑门电路,这些电路处理不同的输入以产生特定的输出,从而实现生物功能的创建或控制。虽然 CRISPR 由于其 RNA 引导的靶向其他核酸的能力已成为分子生物学中的首选工具,但它并未频繁应用于除控制引导 RNA (gRNA) 之外的逻辑门。在这项研究中,我们介绍了一种改造后的 Cas9 (split Cas9)的适应方法,以生成能够感知生物事件的逻辑门,利用 Cas9 报告基因(EGxxFP)来检测诸如癌细胞起源、上皮间质转化(EMT)和细胞融合等事件。首先,我们将 split Cas9 的互补部分置于不同的启动子下,一个启动子特异性地位于上皮来源的癌细胞中(hCEA),另一个启动子是通用启动子。自组装的 intein 用于促进 Cas9 两半的重新组装。因此,只有具有上皮起源的癌细胞才能激活报告基因,表现出绿色荧光。随后,我们探讨了该系统是否能够检测生物过程,如上皮间质转化(EMT)。为此,我们设计了一个逻辑门,其中 Cas9 的一半在 hCEA 下表达,而另一半则由 TWIST1 激活。结果表明,经历 EMT 的细胞有效地激活了报告基因。接下来,我们将两个输入(上皮起源和 EMT)结合起来创建一个新的逻辑门,只有经历 EMT 的上皮来源的癌细胞才能激活报告基因。最后,我们将 split-Cas9 逻辑门用作细胞融合的传感器,包括诱导和自然发生的情况。每个细胞类型都表达 split Cas9 的一半,融合的诱导导致多核合胞体和荧光报告基因的出现。这里提出的 split Cas9 系统的简单性允许将其集成到各种细胞过程中,不仅作为传感器,还作为执行器。