Akouibaa Ahmed, Akouibaa Abdelilah, Masrour Rachid, Benhamou Mabrouk, Rezzouk Abdellah
Laboratory of Solid Physics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, BP 1796 Fez, Morocco.
LPPSMM, Physics Department, Faculty of Sciences Ben M'Sik, Hassan II University Casablanca, P.O. Box 7955, Casablanca, Morocco.
Spectrochim Acta A Mol Biomol Spectrosc. 2024 Jan 5;304:123358. doi: 10.1016/j.saa.2023.123358. Epub 2023 Sep 9.
This study aims to explore the numerical analysis of the impact of integrating titanium oxide (TiO) into a D-shaped optical fiber biosensor based on surface plasmon resonance (SPR). A thin layer of gold (Au) is applied to the flat section of the fiber, which is also coated with a thin layer of titanium dioxide (TiO). The behavior and performance of the proposed biosensor for use in biological environments are evaluated using the finite element method (FEM). The optical response of SPR-based biosensors is highly dependent on the analyzed medium, enabling the detection of pathogenic cells and abnormalities in biological tissues. This provides high sensitivity and selectivity, as well as real-time detection accuracy and speed. In this study, the biosensor is incorporated into a biological medium with a refractive index that varies with wavelength. A series of simulations have been conducted to plot the spectra of transmissions, absorptions, and dielectric losses obtained in the output of the sensor instrument. From these spectra, the corresponding surface plasmon resonance (SPR) wavelength (λ) within the visible-near-infrared band can be determined. Taking into account the various parameters that influence plasmonic interactions, the biosensor's performance parameters, in particular sensitivity and refractive index resolution have been optimized. Our results show that the presence of the TiO layer improves the performance of the proposed sensor and offers the possibility of adjusting the resonance wavelength (λ). In addition, our proposed sensor can achieve a better resolution of 7.50×10[RIU] in 1.34-143 range of analyte refractive index, which notably exceeds that of current technologies. This opens up new prospects in the field of chemical and biological detection.
本研究旨在探索将二氧化钛(TiO)集成到基于表面等离子体共振(SPR)的D形光纤生物传感器中的影响的数值分析。在光纤的平坦部分涂覆一层薄金(Au),该部分还涂覆有一层二氧化钛(TiO)。使用有限元方法(FEM)评估所提出的用于生物环境的生物传感器的行为和性能。基于SPR的生物传感器的光学响应高度依赖于被分析的介质,能够检测生物组织中的致病细胞和异常情况。这提供了高灵敏度和选择性,以及实时检测的准确性和速度。在本研究中,生物传感器被置于折射率随波长变化的生物介质中。已经进行了一系列模拟,以绘制在传感器仪器输出中获得的透射、吸收和介电损耗光谱。从这些光谱中,可以确定可见-近红外波段内相应的表面等离子体共振(SPR)波长(λ)。考虑到影响等离子体相互作用的各种参数,对生物传感器的性能参数,特别是灵敏度和折射率分辨率进行了优化。我们的结果表明,TiO层的存在提高了所提出传感器的性能,并提供了调整共振波长(λ)的可能性。此外,我们提出的传感器在1.34-1.43范围内的分析物折射率下可以实现7.50×10[RIU]的更好分辨率,这明显超过了当前技术。这为化学和生物检测领域开辟了新的前景。