Suppr超能文献

含联苯结构 PSMA 示踪剂的 [Ga]-标记合成、临床前评价及首例人体 PET 研究。

Synthesis, Preclinical Evaluation, and First-in-Human PET Study of [Ga]-Labeled Biphenyl-Containing PSMA Tracers.

机构信息

Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China.

出版信息

J Med Chem. 2023 Sep 28;66(18):13332-13345. doi: 10.1021/acs.jmedchem.3c01475. Epub 2023 Sep 14.

Abstract

Radioisotope-labeled prostate-specific membrane antigen (PSMA) PET tracers have gained popularity in diagnosing prostate cancer (PCa). This study aimed to improve the affinity and tumor-targeting capabilities of new PSMA tracers by increasing the number of pharmacophores that specifically bind to PSMA. Using biphenyl as a core scaffold, we investigated the relationship among spacer segments, affinity, and pharmacokinetic properties. In preclinical PET studies on mice with 22Rv1 tumors, compared with [Ga]Ga- (SUV = 3.37), [Ga]Ga- ( = 0.15) showed higher tumor uptake (SUV = 3.51) and lower renal uptake (T/K = 1.84). In the first-in-human study, [Ga]Ga- effectively detected small PCa-associated lesions and distant metastases. The advantages of [Ga]Ga- include high tumor uptake, straightforward synthesis, and labeling, making it a promising PSMA PET tracer. Furthermore, [Ga]Ga- contains a DOTA chelator, allowing convenient labeling with therapeutic radionuclides such as Lu and Ac, providing the potential for targeted radioligand therapy in PCa.

摘要

放射性同位素标记的前列腺特异性膜抗原(PSMA)PET 示踪剂在诊断前列腺癌(PCa)方面越来越受欢迎。本研究旨在通过增加与 PSMA 特异性结合的药效团数量来提高新型 PSMA 示踪剂的亲和力和肿瘤靶向能力。本研究以联苯为核心支架,研究了间隔片段、亲和力和药代动力学性质之间的关系。在 22Rv1 肿瘤小鼠的临床前 PET 研究中,与 [Ga]Ga-(SUV = 3.37)相比,[Ga]Ga-( = 0.15)表现出更高的肿瘤摄取(SUV = 3.51)和更低的肾脏摄取(T/K = 1.84)。在首例人体研究中,[Ga]Ga- 有效地检测到小的 PCa 相关病变和远处转移。[Ga]Ga- 的优点包括高肿瘤摄取、合成和标记简单,使其成为一种很有前途的 PSMA PET 示踪剂。此外,[Ga]Ga- 含有 DOTA 螯合剂,允许与治疗性放射性核素如 Lu 和 Ac 进行方便的标记,为 PCa 的靶向放射性配体治疗提供了潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验