CSIC, Global Ecology CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
CSIC, Global Ecology CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano 39100, Italy.
Sci Total Environ. 2023 Dec 20;905:167062. doi: 10.1016/j.scitotenv.2023.167062. Epub 2023 Sep 13.
Soil mineral elements play a crucial role in ecosystem productivity and pollution dynamics. Climate models project an increase in drought severity in the Mediterranean Basin in the coming decades, which could lead to changes in the composition and concentrations of mineral elements in soils. These changes can have significant impacts on the fundamental processes of plant-soil cycles. While previous studies have predominantly focused on carbon, nitrogen, and phosphorus, there is a notable lack of research on the biogeochemical responses of other mineral elements to increasing drought. In this study, we investigated the effects of chronic drought (15 years of experimental rainfall exclusion) and seasonal drought (summer period) on the extractable soil concentrations of 17 mineral elements (arsenic (As), calcium (Ca), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), sulphur (S), strontium (Sr), vanadium (V) and zinc (Zn)) in a Mediterranean holm oak forest. We also explored the potential biotic and abiotic mechanisms underlying the changes in extractable elemental concentrations under chronic drought conditions. Our findings reveal that soil elemental concentrations varied significantly due to seasonal changes and chronic drought, with soil microclimate, biological activity, and organic matter being the main drivers of this variability. Levels of soil water content primarily explained the observed variations in soil elemental concentrations. Most of the mineral elements (13 out of 17) exhibited higher concentrations during winter-spring (wet seasons) compared to summer-autumn (dry seasons). The chronic drought treatment resulted in K limitation, increasing vegetation vulnerability to drought stress. Conversely, the accumulation of S in soils due to drought may intensify the risk of S losses from the plant-soil system. Under drought conditions, certain trace elements (particularly Mn, V, and Cd) exhibited increased extractability, posing potential risks to plant health and the exportation of these elements into continental waters. Overall, our results suggest that alterations in mineral element concentrations under future drier conditions could promote ecosystem degradation and pollution dispersion in the Mediterranean Basin. Understanding and predicting these changes are essential for effective ecosystem management and mitigating the potential negative impacts on plant health and water quality.
土壤矿物质元素在生态系统生产力和污染动态中起着至关重要的作用。气候模型预测,未来几十年地中海地区的干旱严重程度将会增加,这可能导致土壤中矿物质元素的组成和浓度发生变化。这些变化可能会对植物-土壤循环的基本过程产生重大影响。虽然以前的研究主要集中在碳、氮和磷上,但对于其他矿物质元素对日益增加的干旱的生物地球化学响应的研究却明显不足。在这项研究中,我们研究了慢性干旱(15 年的实验性降雨排除)和季节性干旱(夏季)对地中海地区常绿栎林土壤中 17 种可提取矿物质元素(砷(As)、钙(Ca)、镉(Cd)、铬(Cr)、铜(Cu)、铁(Fe)、汞(Hg)、钾(K)、镁(Mg)、锰(Mn)、钼(Mo)、镍(Ni)、铅(Pb)、硫(S)、锶(Sr)、钒(V)和锌(Zn))的可提取浓度的影响。我们还探讨了在慢性干旱条件下,可提取元素浓度变化的潜在生物和非生物机制。我们的研究结果表明,由于季节性变化和慢性干旱,土壤元素浓度发生了显著变化,土壤微气候、生物活性和有机质是这种变异性的主要驱动因素。土壤水分含量水平主要解释了观察到的土壤元素浓度变化。在冬季-春季(湿润季节),大多数矿物质元素(17 种中的 13 种)的浓度高于夏季-秋季(干旱季节)。慢性干旱处理导致钾的限制,增加了植被对干旱胁迫的脆弱性。相反,由于干旱,土壤中硫的积累可能会加剧植物-土壤系统中硫损失的风险。在干旱条件下,某些微量元素(特别是 Mn、V 和 Cd)的提取能力增强,对植物健康和这些元素向大陆水域的输出构成潜在威胁。总的来说,我们的研究结果表明,在未来更干燥的条件下,矿物质元素浓度的变化可能会促进地中海地区生态系统的退化和污染扩散。了解和预测这些变化对于有效的生态系统管理和减轻对植物健康和水质的潜在负面影响至关重要。