Translational Medicine Research Center, Hangzhou First People's Hospital, 310006, Hangzhou, Zhejiang Province, China.
Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, 310006, Hangzhou, Zhejiang Province, China.
Nat Commun. 2023 Sep 14;14(1):5686. doi: 10.1038/s41467-023-41015-0.
Identifying the primary site of metastatic cancer is critical to guiding the subsequent treatment. Approximately 3-9% of metastatic patients are diagnosed with cancer of unknown primary sites (CUP) even after a comprehensive diagnostic workup. However, a widely accepted molecular test is still not available. Here, we report a method that applies formalin-fixed, paraffin-embedded tissues to construct reduced representation bisulfite sequencing libraries (FFPE-RRBS). We then generate and systematically evaluate 28 molecular classifiers, built on four DNA methylation scoring methods and seven machine learning approaches, using the RRBS library dataset of 498 fresh-frozen tumor tissues from primary cancer patients. Among these classifiers, the beta value-based linear support vector (BELIVE) performs the best, achieving overall accuracies of 81-93% for identifying the primary sites in 215 metastatic patients using top-k predictions (k = 1, 2, 3). Coincidentally, BELIVE also successfully predicts the tissue of origin in 81-93% of CUP patients (n = 68).
确定转移性癌症的原发部位对于指导后续治疗至关重要。即使经过全面的诊断检查,仍有约 3-9%的转移性患者被诊断为不明原发部位的癌症(CUP)。然而,目前仍然没有广泛接受的分子检测方法。在这里,我们报告了一种应用于福尔马林固定、石蜡包埋组织构建简化代表性亚硫酸氢盐测序文库(FFPE-RRBS)的方法。然后,我们使用来自原发性癌症患者的 498 份新鲜冷冻肿瘤组织的 RRBS 文库数据集,生成并系统地评估了基于四种 DNA 甲基化评分方法和七种机器学习方法的 28 种分子分类器。在这些分类器中,基于 beta 值的线性支持向量机(BELIVE)表现最佳,在使用 top-k 预测(k=1、2、3)时,对 215 名转移性患者的原发部位识别的总准确率为 81-93%。巧合的是,BELIVE 还成功地预测了 68 名 CUP 患者(n=68)中 81-93%的起源组织。