Rohrbach David, Kang Bong Joo, Zyaee Elnaz, Feurer Thomas
Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland.
Sci Rep. 2023 Sep 14;13(1):15228. doi: 10.1038/s41598-023-41843-6.
We present a versatile THz waveguide platform for frequencies between 0.1 THz and 1.5 THz, designed to exhibit vacuum-like dispersion and electric as well as magnetic field enhancement. While linear THz spectroscopy benefits from the extended interaction length in combination with moderate losses, nonlinear THz spectroscopy profits from the field enhancement and zero dispersion, with the associated reshaping-free propagation of broadband single- to few-cycle THz pulses. Moreover, the vacuum-like dispersion allows for velocity matching in mixed THz and visible to infrared pump-probe experiments. The platform is based on the motif of a metallic double ridged waveguide. We experimentally characterize essential waveguide properties, for instance, propagation and bending losses, but also demonstrate a junction and an interferometer, essentially because those elements are prerequisites for THz waveform synthesis, and hence, for coherently controlled linear and nonlinear THz interactions.
我们展示了一种适用于0.1太赫兹至1.5太赫兹频率范围的多功能太赫兹波导平台,其设计旨在呈现类似真空的色散以及电场和磁场增强特性。线性太赫兹光谱得益于扩展的相互作用长度以及适度的损耗,而非线性太赫兹光谱则受益于场增强和零色散,以及宽带单周期至少周期太赫兹脉冲的无整形传播。此外,类似真空的色散允许在太赫兹与可见光至红外泵浦 - 探测实验中实现速度匹配。该平台基于金属双脊波导的结构。我们通过实验表征了波导的基本特性,例如传播损耗和弯曲损耗,还展示了一个结和一个干涉仪,这主要是因为这些元件是太赫兹波形合成的先决条件,因此也是相干控制线性和非线性太赫兹相互作用的先决条件。