Suppr超能文献

利用量子电路对确定光子数态进行相位估计。

Phase estimation of definite photon number states by using quantum circuits.

作者信息

Najafi Peyman, Naeimi Ghasem, Saeidian Shahpoor

机构信息

Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.

Department of Physics, Islamic Azad University, Qazvin Branch, Qazvin, 34185-1416, Iran.

出版信息

Sci Rep. 2023 Sep 14;13(1):15268. doi: 10.1038/s41598-023-42516-0.

Abstract

We propose a method to map the conventional optical interferometry setup into quantum circuits. The unknown phase shift inside a Mach-Zehnder interferometer in the presence of photon loss is estimated by simulating the quantum circuits. For this aim, we use the Bayesian approach in which the likelihood functions are needed, and they are obtained by simulating the appropriate quantum circuits. The precision of four different definite photon-number states of light, which all possess six photons, is compared. The measurement scheme that we have considered is counting the number of photons detected after the final beam splitter of the interferometer, and photon loss is modeled by using fictitious beam splitters in the arms of the interferometer. Our results indicate that three of the four definite photon-number states considered can have better precision than the standard interferometry limit whenever the photon loss rate is in a specific range. In addition, the Fisher information for the four definite photon-number states in the setup is also estimated to check the optimality of the chosen measurement scheme.

摘要

我们提出了一种将传统光学干涉测量装置映射到量子电路的方法。通过模拟量子电路来估计存在光子损失时马赫 - 曾德尔干涉仪内的未知相移。为此,我们使用贝叶斯方法,该方法需要似然函数,而似然函数是通过模拟适当的量子电路获得的。比较了四种均含有六个光子的不同确定光子数态光的精度。我们所考虑的测量方案是对干涉仪最终分束器之后检测到的光子数进行计数,并且通过在干涉仪臂中使用虚拟分束器来模拟光子损失。我们的结果表明,只要光子损失率处于特定范围,所考虑的四种确定光子数态中的三种可以具有比标准干涉测量极限更好的精度。此外,还估计了该装置中四种确定光子数态的费舍尔信息,以检验所选测量方案的最优性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d4c/10502080/b33785ac0640/41598_2023_42516_Fig1_HTML.jpg

相似文献

1
Phase estimation of definite photon number states by using quantum circuits.
Sci Rep. 2023 Sep 14;13(1):15268. doi: 10.1038/s41598-023-42516-0.
2
Measurement of Quantum Interference in a Silicon Ring Resonator Photon Source.
J Vis Exp. 2017 Apr 4(122):55257. doi: 10.3791/55257.
3
Modeling the avalanche diode as a photon detector in quantum optical interferometers.
Appl Opt. 2012 Nov 1;51(31):7560-5. doi: 10.1364/AO.51.007560.
4
Quantum Delayed-Choice Experiment with a Beam Splitter in a Quantum Superposition.
Phys Rev Lett. 2015 Dec 31;115(26):260403. doi: 10.1103/PhysRevLett.115.260403. Epub 2015 Dec 28.
5
Phase detection at the quantum limit with multiphoton Mach-Zehnder interferometry.
Phys Rev Lett. 2007 Nov 30;99(22):223602. doi: 10.1103/PhysRevLett.99.223602. Epub 2007 Nov 27.
6
Quantum Hall Valley Splitters and a Tunable Mach-Zehnder Interferometer in Graphene.
Phys Rev Lett. 2021 Apr 9;126(14):146803. doi: 10.1103/PhysRevLett.126.146803.
7
SU(2)-in-SU(1,1) Nested Interferometer for High Sensitivity, Loss-Tolerant Quantum Metrology.
Phys Rev Lett. 2022 Jan 21;128(3):033601. doi: 10.1103/PhysRevLett.128.033601.
9
Phase-controlled integrated photonic quantum circuits.
Opt Express. 2009 Aug 3;17(16):13516-25. doi: 10.1364/oe.17.013516.
10
Maximal quantum Fisher information for phase estimation without initial parity.
Opt Express. 2018 Jun 25;26(13):16292-16302. doi: 10.1364/OE.26.016292.

引用本文的文献

1
Experimental Advances in Phase Estimation with Photonic Quantum States.
Entropy (Basel). 2025 Jul 1;27(7):712. doi: 10.3390/e27070712.

本文引用的文献

1
Frequentist and Bayesian Quantum Phase Estimation.
Entropy (Basel). 2018 Aug 23;20(9):628. doi: 10.3390/e20090628.
2
Optimal multi-photon phase sensing with a single interference fringe.
Sci Rep. 2013 Sep 25;3:2684. doi: 10.1038/srep02684.
3
First long-term application of squeezed states of light in a gravitational-wave observatory.
Phys Rev Lett. 2013 May 3;110(18):181101. doi: 10.1103/PhysRevLett.110.181101. Epub 2013 May 1.
4
Quantum metrology in non-Markovian environments.
Phys Rev Lett. 2012 Dec 7;109(23):233601. doi: 10.1103/PhysRevLett.109.233601. Epub 2012 Dec 4.
5
Robust quantum enhanced phase estimation in a multimode interferometer [corrected].
Phys Rev Lett. 2012 Mar 30;108(13):130402. doi: 10.1103/PhysRevLett.108.130402.
6
Twin matter waves for interferometry beyond the classical limit.
Science. 2011 Nov 11;334(6057):773-6. doi: 10.1126/science.1208798. Epub 2011 Oct 13.
7
Optical phase estimation in the presence of phase diffusion.
Phys Rev Lett. 2011 Apr 15;106(15):153603. doi: 10.1103/PhysRevLett.106.153603. Epub 2011 Apr 14.
8
Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit.
Phys Rev Lett. 2010 Mar 12;104(10):103602. doi: 10.1103/PhysRevLett.104.103602.
9
Optimal quantum phase estimation.
Phys Rev Lett. 2009 Jan 30;102(4):040403. doi: 10.1103/PhysRevLett.102.040403.
10
Quantum metrology.
Phys Rev Lett. 2006 Jan 13;96(1):010401. doi: 10.1103/PhysRevLett.96.010401. Epub 2006 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验