Ye Xin, Gao Lang, Chen Jichen, Lei Mingyue
Institute of Artificial Intelligence and Data Science, Xi'an Technological University, Xi'an, China.
Computer Part III, Xi'an Microelectronics Technology Institute, Xi'an, China.
Front Neurorobot. 2023 Aug 31;17:1204418. doi: 10.3389/fnbot.2023.1204418. eCollection 2023.
Semantic segmentation, which is a fundamental task in computer vision. Every pixel will have a specific semantic class assigned to it through semantic segmentation methods. Embedded systems and mobile devices are difficult to deploy high-accuracy segmentation algorithms. Despite the rapid development of semantic segmentation, the balance between speed and accuracy must be improved. As a solution to the above problems, we created a cross-scale fusion attention mechanism network called CFANet, which fuses feature maps from different scales. We first design a novel efficient residual module (ERM), which applies both dilation convolution and factorized convolution. Our CFANet is mainly constructed from ERM. Subsequently, we designed a new multi-branch channel attention mechanism (MCAM) to refine the feature maps at different levels. Experiment results show that CFANet achieved 70.6% mean intersection over union (mIoU) and 67.7% mIoU on Cityscapes and CamVid datasets, respectively, with inference speeds of 118 FPS and 105 FPS on NVIDIA RTX2080Ti GPU cards with 0.84M parameters.
语义分割是计算机视觉中的一项基础任务。通过语义分割方法,每个像素都会被赋予一个特定的语义类别。嵌入式系统和移动设备难以部署高精度的分割算法。尽管语义分割发展迅速,但速度和准确性之间的平衡仍有待提高。作为上述问题的解决方案,我们创建了一个名为CFANet的跨尺度融合注意力机制网络,它融合了来自不同尺度的特征图。我们首先设计了一种新颖的高效残差模块(ERM),它同时应用了空洞卷积和分组卷积。我们的CFANet主要由ERM构建而成。随后,我们设计了一种新的多分支通道注意力机制(MCAM)来细化不同层级的特征图。实验结果表明,CFANet在Cityscapes和CamVid数据集上分别实现了70.6%的平均交并比(mIoU)和67.7%的mIoU,在配备0.84M参数的NVIDIA RTX2080Ti GPU卡上推理速度分别为118 FPS和105 FPS。