Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China.
State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China.
J Exp Bot. 2024 Jan 1;75(1):103-122. doi: 10.1093/jxb/erad372.
Plants are commonly exposed to abiotic stressors, which can affect their growth, productivity, and quality. Previously, the maize transcription factor ZmCCT was shown to be involved in the photoperiod response, delayed flowering, and quantitative resistance to Gibberella stalk rot. In this study, we demonstrate that ZmCCT can regulate plant responses to drought. ZmCCT physically interacted with ZmFra a 1, ZmWIPF2, and ZmAux/IAA8, which localized to the cell membrane, cytoplasm, and nucleus, respectively, both in vitro and in vivo in a yeast two-hybrid screen in response to abiotic stress. Notably, ZmCCT recruits ZmWIPF2 to the nucleus, which has strong E3 self-ubiquitination activity dependent on its RING-H2 finger domain in vitro. When treated with higher indole-3-acetic acid/abscisic acid ratios, the height and root length of Y331-ΔTE maize plants increased. Y331-ΔTE plants exhibited increased responses to exogenously applied auxin or ABA compared to Y331 plants, indicating that ZmCCT may be a negative regulator of ABA signalling in maize. In vivo, ZmCCT promoted indole-3-acetic acid biosynthesis in ZmCCT-overexpressing Arabidopsis. RNA-sequencing and DNA affinity purification-sequencing analyses showed that ZmCCT can regulate the expression of ZmRD17, ZmAFP3, ZmPP2C, and ZmARR16 under drought. Our findings provide a detailed overview of the molecular mechanism controlling ZmCCT functions and highlight that ZmCCT has multiple roles in promoting abiotic stress tolerance.
植物通常会受到非生物胁迫的影响,这些胁迫会影响它们的生长、生产力和品质。先前的研究表明,玉米转录因子 ZmCCT 参与光周期反应、花期延迟和对赤霉病的数量抗性。在本研究中,我们证明 ZmCCT 可以调节植物对干旱的反应。ZmCCT 与 ZmFra a 1、ZmWIPF2 和 ZmAux/IAA8 物理相互作用,在体外酵母双杂交筛选中,它们分别定位于细胞膜、细胞质和细胞核中,对非生物胁迫有反应。值得注意的是,ZmCCT 招募 ZmWIPF2 进入细胞核,其在体外具有强烈的 E3 自我泛素化活性,依赖于其 RING-H2 指结构域。当用较高的吲哚-3-乙酸/脱落酸比例处理时,Y331-ΔTE 玉米植株的高度和根长增加。与 Y331 植株相比,Y331-ΔTE 植株对外源施加的生长素或 ABA 的反应增强,表明 ZmCCT 可能是玉米 ABA 信号的负调节剂。在体内,ZmCCT 促进 ZmCCT 过表达拟南芥中的吲哚-3-乙酸生物合成。RNA-seq 和 DNA 亲和纯化测序分析表明,ZmCCT 可以在干旱条件下调控 ZmRD17、ZmAFP3、ZmPP2C 和 ZmARR16 的表达。我们的研究结果提供了控制 ZmCCT 功能的分子机制的详细概述,并强调 ZmCCT 在促进非生物胁迫耐受性方面具有多种作用。