Suppr超能文献

污染物及其交互作用修饰因子对中国东北地区流感的滞后效应及预测。

Lagging effects and prediction of pollutants and their interaction modifiers on influenza in northeastern China.

机构信息

Department of Infectious Disease, Shenyang Center for Disease Control and Prevention, 110100, Shenyang, Liaoning Province, People's Republic of China.

Shenyang Natural Focal Diseases Clinical Medical Research Center, 110100, Shenyang, Liaoning Province, People's Republic of China.

出版信息

BMC Public Health. 2023 Sep 19;23(1):1826. doi: 10.1186/s12889-023-16712-6.

Abstract

BACKGROUND

Previous studies have typically explored the daily lagged relations between influenza and meteorology, but few have explored seasonally the monthly lagged relationship, interaction and multiple prediction between influenza and pollution. Our specific objectives are to evaluate the lagged and interaction effects of pollution factors and construct models for estimating influenza incidence in a hierarchical manner.

METHODS

Our researchers collect influenza case data from 2005 to 2018 with meteorological and contaminative factors in Northeast China. We develop a generalized additive model with up to 6 months of maximum lag to analyze the impact of pollution factors on influenza cases and their interaction effects. We employ LASSO regression to identify the most significant environmental factors and conduct multiple complex regression analysis. In addition, quantile regression is taken to model the relation between influenza morbidity and specific percentiles (or quantiles) of meteorological factors.

RESULTS

The influenza epidemic in Northeast China has shown an upward trend year by year. The excessive incidence of influenza in Northeast China may be attributed to the suspected primary air pollutant, NO, which has been observed to have overall low levels during January, March, and June. The Age 15-24 group shows an increase in the relative risk of influenza with an increase in PM concentration, with a lag of 0-6 months (ERR 1.08, 95% CI 0.10-2.07). In the quantitative analysis of the interaction model, PM at the level of 100-120 μg/m, PM at the level of 60-80 μg/m, and NO at the level of 60 μg/m or more have the greatest effect on the onset of influenza. The GPR model behaves better among prediction models.

CONCLUSIONS

Exposure to the air pollutant NO is associated with an increased risk of influenza with a cumulative lag effect. Prioritizing winter and spring pollution monitoring and influenza prediction modeling should be our focus.

摘要

背景

既往研究多探讨流感与气象的逐日滞后关系,而鲜有季节上探讨流感与污染的月滞后关系、交互作用及多重预测。本研究旨在评估污染因素的滞后和交互作用,并分层次构建流感发病率的预测模型。

方法

本研究收集了 2005 年至 2018 年中国东北地区的流感病例数据以及气象和污染因素数据。我们采用广义相加模型,分析了污染因素对流感病例的影响及其交互作用,滞后时间最长可达 6 个月。采用 LASSO 回归识别最重要的环境因素,并进行多重复杂回归分析。此外,还采用分位数回归来建立流感发病率与气象因素特定百分位数(或分位数)之间的关系。

结果

中国东北地区的流感流行呈逐年上升趋势。东北地区流感高发可能与疑似首要空气污染物 NO 有关,其在 1 月、3 月和 6 月整体水平较低。PM 浓度每增加 10μg/m,年龄在 15-24 岁的人群中流感的相对危险度增加 0-6 个月(ERR 1.08,95%CI 0.10-2.07)。在交互模型的定量分析中,PM 在 100-120μg/m、PM 在 60-80μg/m 和 NO 在 60μg/m 或更高水平对流感发病的影响最大。GPR 模型在预测模型中的表现更好。

结论

NO 暴露与流感发病风险增加有关,且具有累积滞后效应。应优先考虑冬季和春季的污染监测和流感预测建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cdc/10510220/3521c6c92b6d/12889_2023_16712_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验