Li Minghui, Zhang DaPeng, Wu Kaifang, Liu Yuhang, Wang Peng, Cao Yonggang, Yang Jian
Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China.
Department of Pharmaceutics Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China.
Nanoscale. 2023 Oct 5;15(38):15700-15707. doi: 10.1039/d3nr02573j.
Electroreduction of CO to valuable chemicals powered by renewable electricity provides a sustainable approach to reduce the environmental issues originating from CO emission. However, insufficient current density and production selectivity hinder its further application. In this case, precisely regulating the CO reduction reaction (CORR) active sites is an excellent strategy to simultaneously reduce the reaction barrier and suppress the hydrogen evolution reaction (HER) pathway. Herein, the strain regulation of atomically dispersed NiN active sites is investigated in helical carbon. Ni-N coordination in the curved carbon lattice displays a reduced distance compared to that in a straight lattice, inflicting local compressive strain on NiN. The resultant catalyst shows the highest CO selectivity of up to 99.4% at -1.4 V ( RHE), the FE is maintained at over 85% over a wide potential range from -0.8 to -1.8 V ( RHE), and the maximum partial current density for CO reaches a high of 458 mA cm at -1.8 V ( RHE). Theoretical investigations show the superior CO electroreduction performance of curved NiN stems from its remarkable ability to generate the *COOH intermediate and to suppress the hydrogen combination simultaneously. Our findings offer a novel strategy to rationally regulate the local three-dimensional structure of single-atom sites for efficient electrocatalysis.
由可再生电力驱动的将CO电还原为有价值化学品的过程为减少源自CO排放的环境问题提供了一种可持续方法。然而,电流密度不足和生产选择性阻碍了其进一步应用。在这种情况下,精确调控CO还原反应(CORR)活性位点是同时降低反应势垒并抑制析氢反应(HER)路径的一种出色策略。在此,研究了螺旋碳中原子分散的NiN活性位点的应变调控。与直晶格中的Ni-N配位相比,弯曲碳晶格中的Ni-N配位距离缩短,对NiN施加了局部压缩应变。所得催化剂在-1.4 V(RHE)时显示出高达99.4%的最高CO选择性,在-0.8至-1.8 V(RHE)的宽电位范围内FE保持在85%以上,并且在-1.8 V(RHE)时CO的最大分电流密度高达458 mA cm²。理论研究表明,弯曲的NiN优异的CO电还原性能源于其生成*COOH中间体和同时抑制氢结合的卓越能力。我们的发现为合理调控单原子位点的局部三维结构以实现高效电催化提供了一种新策略。