Yang Tingting, Li Qiang, Liu Zhengbo, Li Tianyi, Wiaderek Kamila M, Liu Yingxia, Yin Zijia, Lan Si, Wang Wei, Tang Yu, Ren Yang, Liu Qi
Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China.
Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Adv Mater. 2024 Apr;36(17):e2306533. doi: 10.1002/adma.202306533. Epub 2023 Oct 12.
Advanced high-energy-density sodium-ion batteries (SIBs) are inseparable from cathode materials with high specific capacities. Layered manganese-rich oxides (NaMnO, 0.6 ≤ x ≤1) are promising cathode materials owing to their ease of intercalation and extraction of a considerable amount of sodium ions. However, lattice interactions, especially electrostatic repulsive forces and anisotropic stresses, are usually caused by deep desodiatin/sodiation process, resulting in intragranular cracks and capacity degradation in SIBs. Here, boron ions are introduced into the layered structure to build up B─O─Mn bonds. The regulated electronic structure in NaBMnO (B-NMO) materials inhibits the deformation of MnO octahedra, which finally achieves a gentle structural transition during the deep sodiation process. B-NMO electrode exhibits a high capacity (141 mAh g) at 1 C with a capacity retention of 81% after 100 cycles. Therefore, anchoring boron to manganese-rich materials inhibits the detrimental structural evolution of deep sodiation and can be used to obtain excellent cathode materials for SIBs.
先进的高能量密度钠离子电池(SIBs)离不开具有高比容量的阴极材料。层状富锰氧化物(NaMnO,0.6≤x≤1)因其易于嵌入和脱出大量钠离子而成为有前景的阴极材料。然而,晶格相互作用,尤其是静电排斥力和各向异性应力,通常是由深度脱钠/钠化过程引起的,这会导致SIBs中颗粒内部出现裂纹并使容量下降。在此,将硼离子引入层状结构以形成B─O─Mn键。NaBMnO(B-NMO)材料中受调控的电子结构抑制了MnO八面体的变形,最终在深度钠化过程中实现了平缓的结构转变。B-NMO电极在1C时表现出高容量(141 mAh g),100次循环后容量保持率为81%。因此,将硼锚定到富锰材料上可抑制深度钠化过程中有害的结构演变,并可用于获得用于SIBs的优异阴极材料。