Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
BMC Bioinformatics. 2023 Sep 20;24(1):351. doi: 10.1186/s12859-023-05473-z.
Cross-linking mass spectrometry (XL-MS) is a powerful technique for detecting protein-protein interactions (PPIs) and modeling protein structures in a high-throughput manner. In XL-MS experiments, proteins are cross-linked by a chemical reagent (namely cross-linker), fragmented, and then fed into a tandem mass spectrum (MS/MS). Cross-linkers are either cleavable or non-cleavable, and each type requires distinct data analysis tools. However, both types of cross-linkers suffer from imbalanced fragmentation efficiency, resulting in a large number of unidentifiable spectra that hinder the discovery of PPIs and protein conformations. To address this challenge, researchers have sought to improve the sensitivity of XL-MS through invention of novel cross-linking reagents, optimization of sample preparation protocols, and development of data analysis algorithms. One promising approach to developing new data analysis methods is to apply a protein feedback mechanism in the analysis. It has significantly improved the sensitivity of analysis methods in the cleavable cross-linking data. The application of the protein feedback mechanism to the analysis of non-cleavable cross-linking data is expected to have an even greater impact because the majority of XL-MS experiments currently employs non-cleavable cross-linkers.
In this study, we applied the protein feedback mechanism to the analysis of both non-cleavable and cleavable cross-linking data and observed a substantial improvement in cross-link spectrum matches (CSMs) compared to conventional methods. Furthermore, we developed a new software program, ECL 3.0, that integrates two algorithms and includes a user-friendly graphical interface to facilitate wider applications of this new program.
ECL 3.0 source code is available at https://github.com/yuweichuan/ECL-PF.git . A quick tutorial is available at https://youtu.be/PpZgbi8V2xI .
交联质谱(XL-MS)是一种强大的技术,可用于高吞吐量地检测蛋白质-蛋白质相互作用(PPIs)和建模蛋白质结构。在 XL-MS 实验中,蛋白质通过化学试剂(即交联剂)交联,然后进行片段化,再输入串联质谱(MS/MS)。交联剂要么是可切割的,要么是不可切割的,每种类型都需要不同的数据分析工具。然而,这两种类型的交联剂都存在碎片化效率不平衡的问题,导致大量无法识别的谱图,从而阻碍了 PPIs 和蛋白质构象的发现。为了解决这个挑战,研究人员通过发明新型交联试剂、优化样品制备方案以及开发数据分析算法,寻求提高 XL-MS 的灵敏度。开发新数据分析方法的一种很有前途的方法是在分析中应用蛋白质反馈机制。它极大地提高了可切割交联数据中分析方法的灵敏度。将蛋白质反馈机制应用于不可切割交联数据的分析有望产生更大的影响,因为目前大多数 XL-MS 实验都采用不可切割的交联剂。
在这项研究中,我们将蛋白质反馈机制应用于不可切割和可切割交联数据的分析中,与传统方法相比,交联谱匹配(CSMs)得到了显著改善。此外,我们开发了一个新的软件程序 ECL 3.0,它集成了两个算法,并包含一个用户友好的图形界面,以促进这个新程序的更广泛应用。
ECL 3.0 源代码可在 https://github.com/yuweichuan/ECL-PF.git 获得。一个快速教程可在 https://youtu.be/PpZgbi8V2xI 获得。