PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
Department of Cardiology, Zurich University Hospital, Zurich, Switzerland.
Ann Biomed Eng. 2024 Feb;52(2):226-238. doi: 10.1007/s10439-023-03362-3. Epub 2023 Sep 21.
The present study establishes a link between blood flow energy transformations in coronary atherosclerotic lesions and clinical outcomes. The predictive capacity for future myocardial infarction (MI) was compared with that of established quantitative coronary angiography (QCA)-derived predictors. Angiography-based computational fluid dynamics (CFD) simulations were performed on 80 human coronary lesions culprit of MI within 5 years and 108 non-culprit lesions for future MI. Blood flow energy transformations were assessed in the converging flow segment of the lesion as ratios of kinetic and rotational energy values (KER and RER, respectively) at the QCA-identified minimum lumen area and proximal lesion sections. The anatomical and functional lesion severity were evaluated with QCA to derive percentage area stenosis (%AS), vessel fractional flow reserve (vFFR), and translesional vFFR (ΔvFFR). Wall shear stress profiles were investigated in terms of topological shear variation index (TSVI). KER and RER predicted MI at 5 years (AUC = 0.73, 95% CI 0.65-0.80, and AUC = 0.76, 95% CI 0.70-0.83, respectively; p < 0.0001 for both). The predictive capacity for future MI of KER and RER was significantly stronger than vFFR (p = 0.0391 and p = 0.0045, respectively). RER predictive capacity was significantly stronger than %AS and ΔvFFR (p = 0.0041 and p = 0.0059, respectively). The predictive capacity for future MI of KER and RER did not differ significantly from TSVI. Blood flow kinetic and rotational energy transformations were significant predictors for MI at 5 years (p < 0.0001). The findings of this study support the hypothesis of a biomechanical contribution to the process of plaque destabilization/rupture leading to MI.
本研究建立了冠状动脉粥样硬化病变中血流能量转换与临床结果之间的联系。将未来心肌梗死 (MI) 的预测能力与已建立的定量冠状动脉造影 (QCA) 衍生预测因子进行了比较。对 5 年内发生 MI 的 80 个人冠状动脉病变(罪犯病变)和 108 个未来发生 MI 的非罪犯病变进行了基于血管造影的计算流体动力学 (CFD) 模拟。在 QCA 确定的最小管腔面积和近段病变节段的病变汇聚流段评估血流能量转换,以动能和旋转能值(KER 和 RER)的比值表示。使用 QCA 评估解剖学和功能病变严重程度,以得出面积狭窄百分比(%AS)、血管分数血流储备(vFFR)和跨病变 vFFR(ΔvFFR)。根据拓扑剪切变化指数(TSVI)研究壁面剪切应力分布。KER 和 RER 预测 5 年内 MI(AUC=0.73,95%CI 0.65-0.80 和 AUC=0.76,95%CI 0.70-0.83;两者均 p<0.0001)。KER 和 RER 预测未来 MI 的能力明显强于 vFFR(p=0.0391 和 p=0.0045)。RER 预测能力明显强于 %AS 和 ΔvFFR(p=0.0041 和 p=0.0059)。KER 和 RER 预测未来 MI 的能力与 TSVI 无显著差异。血流动力学和旋转能量转换是 5 年内 MI 的重要预测因子(p<0.0001)。本研究的结果支持斑块不稳定/破裂导致 MI 的生物力学贡献的假说。