The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China.
State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China.
Plant Physiol. 2023 Dec 30;194(1):391-407. doi: 10.1093/plphys/kiad508.
Exposure of dark-grown etiolated seedlings to light triggers the transition from skotomorphogenesis/etiolation to photomorphogenesis/de-etiolation. In the life cycle of plants, de-etiolation is essential for seedling development and plant survival. The mobilization of soluble sugars (glucose [Glc], sucrose, and fructose) derived from stored carbohydrates and lipids to target organs, including cotyledons, hypocotyls, and radicles, underpins de-etiolation. Therefore, dynamic carbohydrate biochemistry is a key feature of this phase transition. However, the molecular mechanisms coordinating carbohydrate status with the cellular machinery orchestrating de-etiolation remain largely opaque. Here, we show that the Glc sensor HEXOKINASE 1 (HXK1) interacts with GROWTH REGULATOR FACTOR5 (GRF5), a transcriptional activator and key plant growth regulator, in Arabidopsis (Arabidopsis thaliana). Subsequently, GRF5 directly binds to the promoter of phytochrome A (phyA), encoding a far-red light (FR) sensor/cotyledon greening inhibitor. We demonstrate that the status of Glc within dark-grown etiolated cotyledons determines the de-etiolation of seedlings when exposed to light irradiation by the HXK1-GRF5-phyA molecular module. Thus, following seed germination, accumulating Glc within dark-grown etiolated cotyledons stimulates a HXK1-dependent increase of GRF5 and an associated decrease of phyA, triggering the perception, amplification, and relay of HXK1-dependent Glc signaling, thereby facilitating the de-etiolation of seedlings following light irradiation. Our findings, therefore, establish how cotyledon carbohydrate signaling under subterranean darkness is sensed, amplified, and relayed, determining the phase transition from skotomorphogenesis to photomorphogenesis on exposure to light irradiation.
黑暗中生长的黄化幼苗暴露在光线下会引发由暗形态建成/黄化到光形态建成/去黄化的转变。在植物的生命周期中,去黄化对于幼苗的发育和植物的生存是必不可少的。来自储存碳水化合物和脂质的可溶糖(葡萄糖[Glc]、蔗糖和果糖)向包括子叶、下胚轴和胚根在内的靶器官的动员,支撑着去黄化。因此,动态碳水化合物生物化学是这一相变的关键特征。然而,协调碳水化合物状态与协调去黄化的细胞机制的分子机制在很大程度上仍不清楚。在这里,我们表明葡萄糖传感器己糖激酶 1(HXK1)与生长调节因子 5(GRF5)相互作用,GRF5 是一种转录激活因子和关键的植物生长调节剂,在拟南芥(Arabidopsis thaliana)中。随后,GRF5 直接结合到光敏色素 A(phyA)的启动子上,phyA 编码远红光(FR)传感器/子叶变绿抑制剂。我们证明,黑暗中生长的黄化子叶中 Glc 的状态决定了幼苗在暴露于光照射下的去黄化程度,该作用是由 HXK1-GRF5-phyA 分子模块介导的。因此,在种子发芽后,黑暗中生长的黄化子叶中 Glc 的积累会刺激 HXK1 依赖性 GRF5 的增加和 phyA 的相应减少,从而触发 HXK1 依赖性 Glc 信号的感知、放大和传递,从而促进幼苗在光照射下的去黄化。因此,我们的发现建立了在地下黑暗条件下子叶碳水化合物信号如何被感知、放大和传递,从而决定了在暴露于光照射下从暗形态建成到光形态建成的相变。