Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA; Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia, USA.
Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA.
J Biol Chem. 2023 Nov;299(11):105275. doi: 10.1016/j.jbc.2023.105275. Epub 2023 Sep 21.
It is known that metabolic defects in the retinal pigment epithelium (RPE) can cause degeneration of its neighboring photoreceptors in the retina, leading to retinal degenerative diseases such as age-related macular degeneration. However, how RPE metabolism supports the health of the neural retina remains unclear. The retina requires exogenous nitrogen sources for protein synthesis, neurotransmission, and energy metabolism. Using N tracing coupled with mass spectrometry, we found human RPE can utilize the nitrogen in proline to produce and export 13 amino acids, including glutamate, aspartate, glutamine, alanine, and serine. Similarly, we found this proline nitrogen utilization in the mouse RPE/choroid but not in the neural retina of explant cultures. Coculture of human RPE with the retina showed that the retina can take up the amino acids, especially glutamate, aspartate, and glutamine, generated from proline nitrogen in the RPE. Intravenous delivery of N proline in vivo demonstrated N-derived amino acids appear earlier in the RPE before the retina. We also found proline dehydrogenase, the key enzyme in proline catabolism is highly enriched in the RPE but not the retina. The deletion of proline dehydrogenase blocks proline nitrogen utilization in RPE and the import of proline nitrogen-derived amino acids in the retina. Our findings highlight the importance of RPE metabolism in supporting nitrogen sources for the retina, providing insight into understanding the mechanisms of the retinal metabolic ecosystem and RPE-initiated retinal degenerative diseases.
已知视网膜色素上皮(RPE)的代谢缺陷会导致其邻近的感光细胞在视网膜中退化,从而导致年龄相关性黄斑变性等视网膜退行性疾病。然而,RPE 代谢如何支持神经视网膜的健康尚不清楚。视网膜需要外源性氮源来进行蛋白质合成、神经传递和能量代谢。我们使用 N 追踪结合质谱法发现,人 RPE 可以利用脯氨酸中的氮来产生和输出 13 种氨基酸,包括谷氨酸、天冬氨酸、谷氨酰胺、丙氨酸和丝氨酸。同样,我们在小鼠的 RPE/脉络膜中发现了这种脯氨酸氮的利用,但在离体培养的神经视网膜中没有发现。人 RPE 与视网膜共培养表明,视网膜可以摄取氨基酸,特别是谷氨酸、天冬氨酸和谷氨酰胺,这些氨基酸是由 RPE 中的脯氨酸氮产生的。体内静脉注射 N 脯氨酸表明,在视网膜之前,N 衍生的氨基酸更早出现在 RPE 中。我们还发现,脯氨酸脱氢酶是脯氨酸分解代谢的关键酶,它在 RPE 中高度富集,但在视网膜中却没有。脯氨酸脱氢酶的缺失会阻止 RPE 中脯氨酸氮的利用以及视网膜中脯氨酸氮衍生氨基酸的摄取。我们的发现强调了 RPE 代谢在为视网膜提供氮源方面的重要性,为理解视网膜代谢生态系统和 RPE 引发的视网膜退行性疾病的机制提供了新的视角。