文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于抗肿瘤治疗中细胞内肽类药物递送的工程聚合纳米载体。

Engineered Polymeric Nanovector for Intracellular Peptide Delivery in Antitumor Therapy.

机构信息

Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China.

Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan.

出版信息

Int J Nanomedicine. 2023 Sep 19;18:5343-5363. doi: 10.2147/IJN.S427536. eCollection 2023.


DOI:10.2147/IJN.S427536
PMID:37746048
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10517702/
Abstract

OBJECTIVE: This study aimed to deliver a polypeptide from the Bax-BH3 domain (BHP) through the synthesis of self-assembled amphiphile nanovectors (NVs) and to assess their potential for cancer therapeutic applications and biological safety in vitro and in vivo. These findings provide valuable options for cancer intervention and a novel approach for the rational design of therapeutics. METHODS: We studied the antitumor activity of BHP by preparing RGDfK-PHPMA-b-Poly (MMA--(Rhob-MA)) (RPPMMRA) and encapsulating it in BHP-NV. We also performed a series of characterizations and property analyses of RPPMMRA, including its size, stability, and drug-carrying capacity. The biocompatibility of RPPMMRA was evaluated in terms of cytotoxicity and hemolytic effects. The pro-apoptotic capacity of BHP was evaluated in vitro using mitochondrial membrane potential, flow cytometry, and apoptosis visualization techniques. The potential therapeutic effects of BHP on tumors were explored using reverse molecular docking. We also investigated the in vivo proapoptotic effect of BHP-NV in a nude mouse tumor model. RESULTS: NVs were successfully prepared with hydrated particle sizes ranging from 189.6 nm to 256.6 nm, spherical overall, and were able to remain stable in different media for 72 h with drug loading up to 15.2%. The NVs were be successfully internalized within 6 h with good biocompatibility. Neither BHP nor NV showed significant toxicity when administered alone, however, BHP-NV demonstrated significant side effects in vitro and in vivo. The apoptosis rate increased significantly from 14.13% to 66.34%. Experiments in vivo showed that BHP-NV exhibited significant apoptotic and tumor-suppressive effects. CONCLUSION: A targeted fluorescent NV with high drug delivery efficiency and sustained release protected the active center of BHP, constituting BHP-NV for targeted delivery. RPPMMRA demonstrated excellent biocompatibility, stability, and drug loading ability, whereas and BHP-NV demonstrated potent antitumor effects in vivo and in vitro.

摘要

目的:本研究旨在通过合成自组装两亲性纳米载体(NVs)递送 Bax-BH3 结构域(BHP)多肽,并评估其在体外和体内用于癌症治疗应用和生物安全性的潜力。这些发现为癌症干预提供了有价值的选择,并为治疗药物的合理设计提供了新方法。

方法:我们通过制备 RGDfK-PHPMA-b-Poly(MMA-(Rhob-MA))(RPPMMRA)并将其包裹在 BHP-NV 中,研究了 BHP 的抗肿瘤活性。我们还对 RPPMMRA 的一系列特性和性质进行了分析,包括其粒径、稳定性和载药能力。通过细胞毒性和溶血实验评估 RPPMMRA 的生物相容性。通过线粒体膜电位、流式细胞术和凋亡可视化技术评估 BHP 的促凋亡能力。通过反向分子对接研究了 BHP 对肿瘤的潜在治疗效果。我们还在裸鼠肿瘤模型中研究了 BHP-NV 的体内促凋亡作用。

结果:成功制备了水合粒径为 189.6nm 至 256.6nm 的 NVs,总体呈球形,在不同介质中 72h 内保持稳定,载药量高达 15.2%。NVs 在 6h 内成功内化,具有良好的生物相容性。单独使用 BHP 或 NV 时均无明显毒性,但 BHP-NV 表现出明显的体外和体内副作用。凋亡率从 14.13%显著增加至 66.34%。体内实验表明,BHP-NV 具有显著的凋亡和肿瘤抑制作用。

结论:一种具有高效药物传递效率和持续释放的靶向荧光 NV 保护了 BHP 的活性中心,构成了用于靶向递送的 BHP-NV。RPPMMRA 表现出优异的生物相容性、稳定性和载药能力,而 BHP-NV 在体内和体外均表现出强大的抗肿瘤作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/66ccb36afc8f/IJN-18-5343-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/eca86d95a475/IJN-18-5343-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/bfb4db16d85a/IJN-18-5343-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/c421609ce7bb/IJN-18-5343-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/ee6b1094e479/IJN-18-5343-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/b812b0deb2eb/IJN-18-5343-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/309462794c18/IJN-18-5343-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/e1eb21a0aa98/IJN-18-5343-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/50b36a04ab7e/IJN-18-5343-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/7e1090938bcb/IJN-18-5343-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/a3b47f288dc2/IJN-18-5343-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/66ccb36afc8f/IJN-18-5343-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/eca86d95a475/IJN-18-5343-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/bfb4db16d85a/IJN-18-5343-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/c421609ce7bb/IJN-18-5343-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/ee6b1094e479/IJN-18-5343-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/b812b0deb2eb/IJN-18-5343-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/309462794c18/IJN-18-5343-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/e1eb21a0aa98/IJN-18-5343-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/50b36a04ab7e/IJN-18-5343-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/7e1090938bcb/IJN-18-5343-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/a3b47f288dc2/IJN-18-5343-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07c6/10517702/66ccb36afc8f/IJN-18-5343-g0011.jpg

相似文献

[1]
Engineered Polymeric Nanovector for Intracellular Peptide Delivery in Antitumor Therapy.

Int J Nanomedicine. 2023

[2]
Nanovector Assembled from Natural Egg Yolk Lipids for Tumor-Targeted Delivery of Therapeutics.

ACS Appl Mater Interfaces. 2020-2-5

[3]
Engineering of cell microenvironment-responsive polypeptide nanovehicle co-encapsulating a synergistic combination of small molecules for effective chemotherapy in solid tumors.

Acta Biomater. 2016-10-26

[4]
A polymeric micelle with an endosomal pH-sensitivity for intracellular delivery and enhanced antitumor efficacy of hydroxycamptothecin.

Acta Biomater. 2019-2-26

[5]
Smart nanovehicles based on pH-triggered disassembly of supramolecular peptide-amphiphiles for efficient intracellular drug delivery.

Small. 2013-10-24

[6]
Redox-sensitive carrier-free nanoparticles self-assembled by disulfide-linked paclitaxel-tetramethylpyrazine conjugate for combination cancer chemotherapy.

Theranostics. 2021-2-20

[7]
Irinotecan delivery by unimolecular micelles composed of reduction-responsive star-like polymeric prodrug with high drug loading for enhanced cancer therapy.

Colloids Surf B Biointerfaces. 2018-6-25

[8]
Dual Receptor-Targeted and Redox-Sensitive Polymeric Micelles Self-Assembled from a Folic Acid-Hyaluronic Acid-SS-Vitamin E Succinate Polymer for Precise Cancer Therapy.

Int J Nanomedicine. 2020-4-24

[9]
A polypeptide based podophyllotoxin conjugate for the treatment of multi drug resistant breast cancer with enhanced efficiency and minimal toxicity.

Acta Biomater. 2018-4-22

[10]
Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy.

Mater Sci Eng C Mater Biol Appl. 2017-1-1

本文引用的文献

[1]
Natural and synthetic nanovectors for cancer therapy.

Nanotheranostics. 2023

[2]
Programmed-stimuli responsive carrier-free multidrug delivery system for highly efficient trimodal combination therapy.

J Colloid Interface Sci. 2023-5

[3]
pH-responsive organic/inorganic hybrid nanocolloids for transcellular delivery of ribonucleolytic payloads toward targeted anti-glioma therapy.

J Colloid Interface Sci. 2023-3-15

[4]
Gadolinium-hybridized mesoporous organosilica nanoparticles with high magnetic resonance imaging performance for targeted drug delivery.

J Colloid Interface Sci. 2023-3

[5]
Anionic amphiphilic calixarenes for peptide assembly and delivery.

J Colloid Interface Sci. 2022-10-15

[6]
Preliminary Clinical Application of RGD-Containing Peptides as PET Radiotracers for Imaging Tumors.

Front Oncol. 2022-3-2

[7]
Synthesis and Evaluation of a Dimeric RGD Peptide as a Preliminary Study for Radiotheranostics with Radiohalogens.

Molecules. 2021-10-10

[8]
Poly(HPMA-co-NIPAM) copolymer as an alternative to polyethylene glycol-based pharmacokinetic modulation of therapeutic proteins.

Int J Pharm. 2021-10-25

[9]
Manganese-Zeolitic Imidazolate Frameworks-90 with High Blood Circulation Stability for MRI-Guided Tumor Therapy.

Nanomicro Lett. 2019-7-23

[10]
Trifunctional Graphene Quantum Dot@LDH Integrated Nanoprobes for Visualization Therapy of Gastric Cancer.

Adv Healthc Mater. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索